CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 3, 2022

UCSD CSE107: Intro to Modern Cryptography

Lecture 9b

Computational Number Theory (end of previous lecture)

Algorithms on numbers

Algorithms on numbers

In an algorithms course, the cost of arithmetic is often assumed to be $\mathcal{O}(1)$, because numbers are small. In cryptography numbers are

very, very BIG!

Typical numbers are 2⁵¹², 2¹⁰²⁴, 2²⁰⁴⁸: hundreds or thousands of bits.

Numbers are provided to algorithms in binary. The length of a, denoted |a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

The straightforward algorithms have the following complexities:

Algorithm	Input	Output	Time
ADD	a, b	a + b	$\mathcal{O}(a + b)$
MULT	a, b	ab	$\mathcal{O}(a \cdot b)$
INT-DIV	a, N	q,r	$\mathcal{O}(a \cdot N)$
MOD	a, N	a mod N	$\mathcal{O}(a \cdot N)$
EXT-GCD	a, N	(d, a', N')	$\mathcal{O}(a \cdot N)$
MOD-INV	$a \in \mathbb{Z}_{N}^{*}$, N	$a^{-1} \mod N$	$\mathcal{O}(N ^2)$
MOD-EXP	$a\in\mathbb{Z}_N$, n, N	<i>aⁿ</i> mod N	$\mathcal{O}(n \cdot N ^2)$
EXP _G	$a\in G$, n	$a^n \in G$	$\mathcal{O}(n)$ G-ops

Algorithms on numbers (Extended) gcd Exponentiation

Extended gcd

Definition (EXT-GCD)

EXT-GCD(a, N) returns (r, u, v) such that

$$r = \gcd(a, N) = a \cdot u + N \cdot v$$
.

Example: EXT-GCD(12, 20) =

Extended gcd

Definition (EXT-GCD)

EXT-GCD(a, N) returns (r, u, v) such that

$$r = \gcd(a, N) = a \cdot u + N \cdot v$$
.

Example: EXT-GCD(12, 20) = (4, 2, -1) because

$$4 = \gcd(12, 20) = 12 \cdot 2 + 20 \cdot (-1) \; .$$

The (extended) Euclidean algorithm

Algorithm for gcd

To compute the (extended) gcd, we use the (extended) Euclidean algorithm.

Definition (EXT-GCD)

EXT-GCD(a, N) returns (r, u, v) such that

$$r = \gcd(a, N) = a \cdot u + N \cdot v$$
.

Lemma

Let
$$(q, r) = INT-DIV(a, N)$$
. Then, $gcd(a, N) = gcd(N, r)$

We use this lemma repeatedly.

Alg EXT-GCD
$$(a, N)$$
 // $(a, N) \neq (0, 0)$
 $(r_0, u_0, v_0) \leftarrow (N, 0, 1)$ // $u_0 a + v_0 N = r_0$
 $(r_1, u_1, v_1) \leftarrow (a, 1, 0)$ // $u_1 a + v_1 N = r_1$
while $r_1 \neq 0$
 $(q, r_2) \leftarrow INT-DIV(r_0, r_1);$ // $r_0 - qr_1 = r_2$
 $u_2 = u_0 - qu_1$
 $v_2 = v_0 - qv_1$ // now $u_2 a + v_2 N = r_2$
 $(r_0, u_0, v_0) \leftarrow (r_1, u_1, v_1)$
 $(r_1, u_1, v_1) \leftarrow (r_2, u_2, v_2)$
return (r_0, u_0, v_0) // $u_0 a + v_0 N = r_0 = gcd(a, N)$
Running time is $\mathcal{O}(|a| \cdot |N|)$, so the extended gcd can be computed in
quadratic time. If $0 < a < N$ then $abs(u) \le N$ and $abs(v) \le a$ where
 $abs(\cdot)$ denotes the absolute value.

Analysis showing all this is non-trivial (worst case is Fibonacci numbers).

For a, N such that gcd(a, N) = 1, we want to compute $a^{-1} \mod N$, meaning the unique $a' \in \mathbb{Z}_N^*$ satisfying $aa' \equiv 1 \pmod{N}$.

But if we let $(d, a', N') \leftarrow \mathsf{EXT-GCD}(a, N)$ then

$$d=1=\gcd(a,N)=a\cdot a'+N\cdot N'$$

But
$$N \cdot N' \equiv 0 \pmod{N}$$
 so $aa' \equiv 1 \pmod{N}$

Alg MOD-INV
$$(a, N)$$

 $(d, a', N') \leftarrow EXT-GCD(a, N)$
return $a' \mod N$

Modular inverse can be computed in quadratic time.

Algorithms on numbers

(Extended) gcc

Exponentiation

Let G be a group and $a \in G$. For $n \in \mathbb{N}$, we want to compute $a^n \in G$. We know that

$$a^n = \underbrace{a \cdot a \cdot \cdot \cdot a}_n$$

Consider:

 $y \leftarrow 1$ for i = 1, ..., n do $y \leftarrow y \cdot a$ return y

Question: Is this a good algorithm?

Let G be a group and $a \in G$. For $n \in \mathbb{N}$, we want to compute $a^n \in G$. We know that

$$a^n = \underbrace{a \cdot a \cdot \cdot \cdot a}_n$$

Consider:

$$y \leftarrow 1$$

for $i = 1, ..., n$ do $y \leftarrow y \cdot a$
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is $\mathcal{O}(n) = \mathcal{O}(2^{|n|})$ so it is exponential time. For $n \approx 2^{512}$ it is prohibitively expensive.

We can compute

$$a \longrightarrow a^2 \longrightarrow a^4 \longrightarrow a^8 \longrightarrow a^{16} \longrightarrow a^{32}$$

in just 5 steps by repeated squaring. So we can compute a^n in *i* steps when $n = 2^i$.

But what if n is not a power of 2?

Suppose the binary length of *n* is 5, meaning the binary representation of *n* has the form $b_4b_3b_2b_1b_0$. (We sometimes write $n = (b_4b_3b_2b_1b_0)_2$.) Then

$$n = 2^4 b_4 + 2^3 b_3 + 2^2 b_2 + 2^1 b_1 + 2^0 b_0$$

= 16b_4 + 8b_3 + 4b_2 + 2b_1 + b_0.

We want to compute a^n . Our exponentiation algorithm will proceed to compute the values y_5 , y_4 , y_3 , y_2 , y_1 , y_0 in turn, as follows:

$$y_5 = id$$

$$y_4 = y_5^2 \cdot a^{b_4} = a^{b_4}$$

$$y_3 = y_4^2 \cdot a^{b_3} = a^{2b_4+b_3}$$

$$y_2 = y_3^2 \cdot a^{b_2} = a^{4b_4+2b_3+b_2}$$

$$y_1 = y_2^2 \cdot a^{b_1} = a^{8b_4+4b_3+2b_2+b_1}$$

$$y_0 = y_1^2 \cdot a^{b_0} = a^{16b_4+8b_3+4b_2+2b_1+b_0}$$

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$.

We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

$$(1101011)_2 \qquad \qquad y \leftarrow a = 2,$$

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

Let N = 131, $G = \mathbb{Z}_N^*$, and $a = 2 \in \mathbb{Z}_N^*$. We want to compute $a^{107} \mod N$. We start with $107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)_2$.

So $2^{107} \equiv 57 \pmod{131}$.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory, (end of previous lecture)

Square-and-Multiply Exponentiation Algorithm

Let $bin(n) = b_{k-1} \dots b_0$ be the binary representation of n, meaning

$$n=\sum_{i=0}^{k-1}b_i2^i$$

Alg
$$\text{EXP}_G(a, n)$$
 // $a \in G, n \ge 1$
 $b_{k-1} \dots b_0 \leftarrow \text{bin}(n)$
 $y \leftarrow 1$
for $i = k - 1$ downto 0 do $y \leftarrow y^2 \cdot a^{b_i}$
return y

The running time is $\mathcal{O}(|n|)$ group operations.

MOD-EXP(a, n, N) returns $a^n \mod N$ in time $\mathcal{O}(|n| \cdot |N|^2)$, meaning is cubic time.

There are many variants of the Square-and-Multiply algorithm.

- Left-to-Right (a.k.a. most significant bit first), as we presented.
- Right-to-Left.
- Fixed-window.
- Sliding-window.
- And more.

Algorithm	Input	Output	Time
ADD	a, b	a+b	$\mathcal{O}(a + b)$
MULT	a, b	ab	$\mathcal{O}(a \cdot b)$
INT-DIV	a, N	q,r	$\mathcal{O}(a \cdot N)$
MOD	a, N	<i>a</i> mod <i>N</i>	$\mathcal{O}(a \cdot N)$
EXT-GCD	a, N	(d, a', N')	$\mathcal{O}(a \cdot N)$
MOD-INV	$a\in\mathbb{Z}_{N}^{st}$, N	$a^{-1} \mod N$	$\mathcal{O}(N ^2)$
MOD-EXP	$a \in \mathbb{Z}_N$, n, N	<i>aⁿ</i> mod N	$\mathcal{O}(n \cdot N ^2)$
EXP _G	$a\in G$, n	$a^n\in G$	$\mathcal{O}(n)$ G-ops

CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

May 3, 2022

UCSD CSE107: Intro to Modern Cryptography

Lecture 10a

Discrete logarithms and RSA

Cyclic groups and discrete logarithms

Finding cyclic groups

Cyclic groups and discrete logarithms

Finding cyclic groups

Cyclic groups and discrete logarithms Generators and cyclic groups Discrete Logarithms

Let G be a group of order m and let $g \in G$. We let

$$\langle g \rangle = \{ g^i : i \in \mathbb{Z}_m \} .$$

The size $|\langle g \rangle|$ of the set $\langle g \rangle$ need not equal m. It could be smaller. Fact: $|\langle g \rangle|$ is always a divisor of m.

Definition (order of an element; generator; cyclic groups)

The order of $g \in G$ is defined to be $|\langle g \rangle|$.

We say that $g \in G$ is a generator (or primitive element) of G if $\langle g \rangle = G$, meaning the order of g is m.

We say that G is cyclic if it has a generator, meaning there exists $g \in G$ such that g is a generator of G.

Let $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8							
5 ⁱ	mod 11											

Let $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8	5	10					
5 ⁱ	mod 11											

Let $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8	5	10	9				
5 ⁱ	mod 11											

Let $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8	5	10	9	7			
5 ⁱ	mod 11											
Let $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8	5	10	9	7	3	6	1
5 ⁱ	mod 11	1	5	3	4	9	1	5	3	4	9	1

so

$$\begin{array}{rcl} \langle 2 \rangle & = & \{1,2,3,4,5,6,7,8,9,10\} \\ \langle 5 \rangle & = & \{1,3,4,5,9\} \end{array}$$

- 2 a generator because $\langle 2 \rangle = \mathbb{Z}_{11}^*$.
- 5 is not a generator because $\langle 5 \rangle \neq \mathbb{Z}_{11}^*$.
- \mathbb{Z}_{11}^* is cyclic because it has a generator.

Let $G = \mathbb{Z}_{12}^* = \{1,$

Let $G = \mathbb{Z}_{12}^* = \{1, 5,$

Let $G = \mathbb{Z}_{12}^* = \{1, 5, 7,$

Let $G = \mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$, which has order m = 4.

	i	0	1	2	3
5 ⁱ	mod 12	1	5	1	5
7'	mod 12	1	7	1	7
$(11)^{i}$	mod 12	1	11	1	11

SO

Is \mathbb{Z}_{12}^* cyclic?

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA

Let $G = \mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$, which has order m = 4.

	i	0	1	2	3
5 ⁱ	mod 12	1	5	1	5
7'	mod 12	1	7	1	7
$(11)^{i}$	mod 12	1	11	1	11

so

$$\begin{array}{rcl} \langle 5\rangle & = & \{1,5\} \\ \langle 7\rangle & = & \{1,7\} \\ \langle 11\rangle & = & \{1,11\} \end{array}$$

Is \mathbb{Z}_{12}^* cyclic? No it is not, because no element has order 4.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA

Cyclic groups and discrete logarithms Generators and cyclic groups Discrete Logarithms

If $G = \langle g \rangle$ is a cyclic group of order *m* then for every $a \in G$ there is a unique exponent $i \in \mathbb{Z}_m$ such that $g^i = a$. We call *i* the discrete logarithm of *a* to base *g* and denote it by

 $\mathrm{DLog}_{G,g}(a)$

The discrete log function is the inverse of the exponentiation function:

$$\begin{aligned} \mathrm{DLog}_{G,g}(g^i) &= i \quad \text{for all } i \in \mathbb{Z}_m \\ g^{\mathrm{DLog}_{G,g}(a)} &= a \quad \text{for all } a \in G. \end{aligned}$$

	i	0	1	2	3	4	5	6	7	8	9
2 ⁱ	mod 11	1	2	4	8	5	10	9	7	3	6

а	1	2	3	4	5	6	7	8	9	10
DLog _{G,2} (a)										

	i	0	1	2	3	4	5	6	7	8	9
2'	mod 11	1	2	4	8	5	10	9	7	3	6

а	1	2	3	4	5	6	7	8	9	10
$\mathrm{DLog}_{G,2}(a)$	0	1								

	i	0	1	2	3	4	5	6	7	8	9
2'	mod 11	1	2	4	8	5	10	9	7	3	6

а	1	2	3	4	5	6	7	8	9	10
DLog _{G,2} (a)	0	1	8							

	i	0	1	2	3	4	5	6	7	8	9
2'	mod 11	1	2	4	8	5	10	9	7	3	6

а	1	2	3	4	5	6	7	8	9	10
DLog _{G,2} (a)	0	1	8	2						

i	0	1	2	3	4	5	6	7	8	9
2 ⁱ mod 11	1	2	4	8	5	10	9	7	3	6

а	1	2	3	4	5	6	7	8	9	10
DLog _{G,2} (a)	0	1	8	2	4	9	7	3	6	5

Let $G = \langle g \rangle$ be a cyclic group of order m with generator $g \in G$. Input: $X \in G$ Desired Output: $DLog_{G,g}(X)$ That is, we want x such that $g^x = X$.

for $x = 0, \dots, m - 1$ do if $g^x = X$ then return x

Is this a good algorithm?

Let $G = \langle g \rangle$ be a cyclic group of order m with generator $g \in G$. Input: $X \in G$ Desired Output: $DLog_{G,g}(X)$ That is, we want x such that $g^x = X$.

for x = 0, ..., m - 1 do if $g^x = X$ then return x

Is this a good algorithm? It is

• Correct (always returns the right answer)

Let $G = \langle g \rangle$ be a cyclic group of order m with generator $g \in G$. Input: $X \in G$ Desired Output: $DLog_{G,g}(X)$ That is, we want x such that $g^x = X$.

for $x = 0, \dots, m - 1$ do if $g^x = X$ then return x

Is this a good algorithm? It is

- Correct (always returns the right answer), but
- SLOW!

Run time is O(m) exponentiations, which for $G = \mathbb{Z}_p^*$ is O(p), which is exponential time and prohibitive for large p.

Cyclic groups and discrete logarithms

Finding cyclic groups

Finding cyclic groups Examples of groups DL and CDH games Choosing/Building groups of the form \mathbb{Z}_p^* Fact 1: Let p be a prime. Then \mathbb{Z}_p^* is cyclic.

Example: \mathbb{Z}_{11}^* is cyclic.

Fact 2: Let G be any group whose order m = |G| is a prime number. Then G is cyclic.

Note: $|\mathbb{Z}_p^*| = p - 1$ is not prime, so Fact 2 doesn't imply Fact 1.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA

Cryptography knows two main providers of cyclic groups:

- Multiplicative groups of finite fields: \mathbb{Z}_p^* is the easiest example.
- Elliptic curves over finite fields.

Computing Discrete Logs: Best known algorithms

Group	Time to find discrete logarithms
\mathbb{Z}_p^*	$e^{1.92(\ln p)^{1/3}(\ln \ln p)^{2/3}}$ (roughly)
,	subexponential time
EC _p	$\sqrt{p}=e^{\ln(p)/2}$
	exponential time

Here p is a prime and EC_p represents an elliptic curve group of order p.

In the first case, if the largest factor of p-1 is q, there is also a $O(\sqrt{q})$ algorithm to solve discrete log.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete log problem makes it the basis for cryptographic schemes in which breaking the scheme requires a discrete log computation.

Discrete logarithm computation records

In \mathbb{Z}_p^* :

p in bits	When
431	2005
530	2007
596	2014
768	2016
795	2019

For elliptic curves, current record seems to be for |p| around 114.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA

Elliptic curve groups are commonly used for public-key cryptography now.

The mathematical details are a bit complex.

For now, think of an elliptic curve group as a cyclic group.

This means it has a generator, a group operation (typically written as +), an order, and one can define the analogue of discrete logarithm in this group.

The structure of elliptic curve groups does not seem to permit the same types of subexponential-time discrete logarithm algorithms as \mathbb{Z}_p^* .

Why Elliptic curve (EC) groups?

Say we want 80-bit security, meaning discrete log computation by the best known algorithm should take time 2^{80} . Then

- ${\color{black} \bullet}$ If we work in \mathbb{Z}_p^* (p a prime) we need to set $|\mathbb{Z}_p^*| = p-1 \approx 2^{1024}$
- But if we work on an elliptic curve group of prime order p then it suffices to set $p \approx 2^{160}$.

This is because

$$e^{1.92(\ln 2^{1024})^{1/3}(\ln \ln 2^{1024})^{2/3}} \approx \sqrt{2^{160}} = 2^{80}$$

But now:

Group Size	Cost of Exponentiation
2 ¹⁶⁰	$Tpprox 160^3$
2 ¹⁰²⁴	$1024^3pprox 260T$

Exponentiation will be 260 times faster in the smaller group.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA

If Moore's law holds, the computational power of (your preferred opponent) doubles every 1.5 years.

If you were to adapt your group size for DLOG as a function of time, you would make sure that:

$$\left(egin{array}{c} \mathsf{time it takes} \ \mathsf{to solve } \mathrm{DLog}_{\mathcal{G}} \end{array}
ight) \geq \left(egin{array}{c} \mathsf{some wide} \ \mathsf{security margin} \end{array}
ight) imes \mathsf{base value} imes 2^{\mathsf{year}/1.5}.$$

• if the time it takes is $e^{(\ln p)/2}$, then $\ln p$ would grow linearly with time.

• if the time it takes is $e^{1.92(\ln p)^{1/3}(\ln \ln p)^{2/3}}$, then $\ln p$ would grow as a cubic function of time.

Finding cyclic groups

- Examples of groups
- $\mathrm{DL}\xspace$ and $\mathrm{CDH}\xspace$ games
- Choosing/Building groups of the form \mathbb{Z}_p^*

Let $G = \langle g \rangle$ be a cyclic group of order *m*.

Ga	me $\mathrm{DL}_{\mathcal{G},g}$
procedure Initialize $x \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} \mathbb{Z}_m; X \leftarrow g^{\times}$ return X	procedure Finalize(x') return ($x = x'$)

Definition (dl-advantage Adv^{dl})

The dl-advantage of an adversary A is

$$\mathsf{Adv}^{\mathrm{dl}}_{\mathcal{G},g}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{DL}^{\mathcal{A}}_{\mathcal{G},g} \Rightarrow \mathsf{true}\right]$$

CDH: The Computational Diffie-Hellman Problem

Let $G = \langle g \rangle$ be a cyclic group of order *m* with generator $g \in G$. The CDH problem is:

Input: $X = g^x \in G$ and $Y = g^y \in G$ Desired Output: $g^{xy} \in G$

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: $x \leftarrow DLog_{G,g}(X)$; Return Y^{x} .

So if one can compute discrete logarithms then one can solve the CDH problem.

The converse is an open question: are CDH and DL equivalent? Should they not be equivalent, there would be a way to quickly solve CDH that avoids computing discrete logarithms. But no such way is known.

CDH Formally

Let $G = \langle g \rangle$ be a cyclic group of order *m*.

Definition (cdh-advantage Adv^{cdh})

The cdh-advantage of an adversary A is

$$\mathsf{Adv}^{\mathrm{cdh}}_{\mathcal{G},g}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{CDH}^{\mathcal{A}}_{\mathcal{G},g} \Rightarrow \mathsf{true}
ight]$$

Finding cyclic groups

- Examples of groups
- DL and CDH games
- Choosing/Building groups of the form \mathbb{Z}_p^*

We will need to build (large) groups over which our cryptographic schemes can work, and find generators in these groups.

How do we do this efficiently?

To find a suitable prime p and generator g of \mathbb{Z}_p^* :

- Pick numbers *p* at random until *p* is a prime of the desired form
- Pick elements g from \mathbb{Z}_p^* at random until g is a generator

For this to work we need to know

- How to test if p is prime
- How many numbers in a given range are primes of the desired form
- How to test if g is a generator of \mathbb{Z}_p^* when p is prime
- How many elements of \mathbb{Z}_p^* are generators

Desired: An efficient algorithm that given an integer k returns a prime $p \in \{2^{k-1}, \ldots, 2^k - 1\}$ such that q = (p-1)/2 is also prime.

Alg Findprime(k) do $p \stackrel{s}{\leftarrow} \{2^{k-1}, \dots, 2^k - 1\}$ until (p is prime and (p-1)/2 is prime) return p

- How do we test primality?
- How many iterations do we need to succeed?

Primality Testing

Given: integer NOutput: TRUE if N is prime, FALSE otherwise.

for $i = 2, ..., \lceil \sqrt{N} \rceil$ do if $N \mod i = 0$ then return false return true Given: integer NOutput: TRUE if N is prime, FALSE otherwise.

for $i = 2, ..., \lceil \sqrt{N} \rceil$ do if $N \mod i = 0$ then return false return true

Correct but SLOW! $O(\sqrt{N})$ running time, exponential in |N|.

However, we have polynomial time algorithms, which is much better:

- $O(|N|^3)$ time randomized algorithms
- Even a $O(|N|^8)$ time deterministic algorithm

Finding cryptographic size prime numbers is not a difficult problem. It's even less of a problem when it only has to be done once. Let $\pi(N)$ be the number of primes in the range $1, \ldots, N$. So if $p \stackrel{s}{\leftarrow} \{1, \ldots, N\}$ then

$$\Pr\left[p \text{ is a prime}\right] = \frac{\pi(N)}{N}$$

Fact:
$$\pi(N) \sim \frac{N}{\ln(N)}$$

So

$$\Pr[p \text{ is a prime}] \sim \frac{1}{\ln(N)}$$

If $N = 2^{1024}$ this is about 0.001488 $\approx 1/700$.

So the number of iterations taken by our algorithm to find a prime is not too big.
The following are assumed to be public: A large prime p and a generator g of \mathbb{Z}_p^* .

- How do we pick a large prime p, and how large is large enough?
- What does it mean for g to be a generator modulo p?
- How do we find a generator modulo p?
- How can Alice quickly compute $x \mapsto g^x \mod p$?
- How can Bob quickly compute $y \mapsto g^y \mod p$?
- Why is it hard to compute (g^x mod p, g^y mod p) → g^{xy} mod p?
 ...

The slides have sketched the answers to many of these questions.