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Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical numbers are 2512, 21024, 22048: hundreds or thousands of bits.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory, (end of previous lecture) 1/37



Algorithms on numbers

The straightforward algorithms have the following complexities:

Algorithm Input Output Time
ADD a, b a + b O(|a|+ |b|)
MULT a, b ab O(|a| · |b|)
INT-DIV a, N q,r O(|a| · |N|)
MOD a, N a mod N O(|a| · |N|)
EXT-GCD a, N (d , a′, N ′) O(|a| · |N|)
MOD-INV a ∈ Z∗

N , N a−1 mod N O(|N|2)
MOD-EXP a ∈ ZN , n, N an mod N O(|n| · |N|2)
EXPG a ∈ G , n an ∈ G O(|n|) G-ops
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Extended gcd

Definition (EXT-GCD)
EXT-GCD(a, N) returns (r , u, v) such that

r = gcd(a, N) = a · u + N · v .

Example: EXT-GCD(12, 20) =

(4, 2,−1) because

4 = gcd(12, 20) = 12 · 2 + 20 · (−1) .
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The (extended) Euclidean algorithm

Algorithm for gcd
To compute the (extended) gcd, we use the (extended) Euclidean
algorithm.
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Extended gcd Algorithm: rough idea

Definition (EXT-GCD)
EXT-GCD(a, N) returns (r , u, v) such that

r = gcd(a, N) = a · u + N · v .

Lemma
Let (q, r) = INT-DIV(a, N). Then, gcd(a, N) = gcd(N, r)

We use this lemma repeatedly.
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Extended gcd Algorithm: code

Alg EXT-GCD(a, N) // (a, N) ̸= (0, 0)
(r0, u0, v0)← (N, 0, 1) // u0a + v0N = r0
(r1, u1, v1)← (a, 1, 0) // u1a + v1N = r1
while r1 ̸= 0

(q, r2)← INT-DIV(r0, r1); // r0 − qr1 = r2
u2 = u0 − qu1
v2 = v0 − qv1 // now u2a + v2N = r2
(r0, u0, v0)← (r1, u1, v1)
(r1, u1, v1)← (r2, u2, v2)

return (r0, u0, v0) // u0a + v0N = r0 = gcd(a, N)
Running time is O(|a| · |N|), so the extended gcd can be computed in
quadratic time. If 0 < a < N then abs(u) ≤ N and abs(v) ≤ a where
abs(·) denotes the absolute value.
Analysis showing all this is non-trivial (worst case is Fibonacci numbers).
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Modular Inverse

For a, N such that gcd(a, N) = 1, we want to compute a−1 mod N,
meaning the unique a′ ∈ Z∗

N satisfying aa′ ≡ 1 (mod N).

But if we let (d , a′, N ′)← EXT-GCD(a, N) then

d = 1 = gcd(a, N) = a · a′ + N · N ′

But N · N ′ ≡ 0 (mod N) so aa′ ≡ 1 (mod N)

Alg MOD-INV(a, N)
(d , a′, N ′)← EXT-GCD(a, N)
return a′ mod N

Modular inverse can be computed in quadratic time.
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Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ≈ 2512 it is prohibitively
expensive.
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Fast exponentiation idea

We can compute

a −→ a2 −→ a4 −→ a8 −→ a16 −→ a32

in just 5 steps by repeated squaring. So we can compute an in i steps
when n = 2i .

But what if n is not a power of 2?
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Square-and-Multiply Exponentiation Example
Suppose the binary length of n is 5, meaning the binary representation of n
has the form b4b3b2b1b0. (We sometimes write n = (b4b3b2b1b0)2.)
Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute an. Our exponentiation algorithm will proceed to
compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = id
y4 = y2

5 · ab4 = ab4

y3 = y2
4 · ab3 = a2b4+b3

y2 = y2
3 · ab2 = a4b4+2b3+b2

y1 = y2
2 · ab1 = a8b4+4b3+2b2+b1

y0 = y2
1 · ab0 = a16b4+8b3+4b2+2b1+b0 .
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Square-and-Multiply Exponentiation Example
Let N = 131, G = Z∗

N , and a = 2 ∈ Z∗
N .

We want to compute a107 mod N.
We start with 107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)2.

(1101011)2 y ← a = 2,

(1101011)2 y ← y2a = a3 = 8,

(1101011)2 y ← y2 = a6 = 64,

(1101011)2 y ← y2a = a13 = 8192 ≡ 70,

(1101011)2 y ← y2 = a26 ≡ 53,

(1101011)2 y ← y2a = a53 ≡ 116,

(1101011)2 y ← y2a = a107 ≡ 57,

So 2107 ≡ 57 (mod 131).
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Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk−1 . . . b0 be the binary representation of n, meaning

n =
k−1∑
i=0

bi2i

Alg EXPG(a, n) // a ∈ G , n ≥ 1
bk−1 . . . b0 ← bin(n)
y ← 1
for i = k − 1 downto 0 do y ← y2 · abi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n, N) returns an mod N in time O(|n| · |N|2), meaning is
cubic time.
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Variants of Square-and-Multiply

There are many variants of the Square-and-Multiply algorithm.

Left-to-Right (a.k.a. most significant bit first), as we presented.
Right-to-Left.
Fixed-window.
Sliding-window.
And more.
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Algorithms on numbers

Algorithm Input Output Time
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Generators and cyclic groups

Let G be a group of order m and let g ∈ G . We let

⟨g⟩ = { g i : i ∈ Zm } .

The size |⟨g⟩| of the set ⟨g⟩ need not equal m. It could be smaller.
Fact: |⟨g⟩| is always a divisor of m.

Definition (order of an element; generator; cyclic groups)
The order of g ∈ G is defined to be |⟨g⟩|.

We say that g ∈ G is a generator (or primitive element) of G if ⟨g⟩ = G ,
meaning the order of g is m.

We say that G is cyclic if it has a generator, meaning there exists g ∈ G
such that g is a generator of G .
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Generators and cyclic groups: Example

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8

5 10 9 7 3 6 1

5i mod 11

1 5 3 4 9 1 5 3 4 9 1

so

⟨2⟩ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
⟨5⟩ = {1, 3, 4, 5, 9}

2 a generator because ⟨2⟩ = Z∗
11.

5 is not a generator because ⟨5⟩ ≠ Z∗
11.

Z∗
11 is cyclic because it has a generator.
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Generators and cyclic groups: Example

Let G = Z∗
12 = {1,

5, 7, 11}, which has order m = 4.

i 0 1 2 3
5i mod 12 1 5 1 5
7i mod 12 1 7 1 7

(11)i mod 12 1 11 1 11

so

⟨5⟩ = {1, 5}
⟨7⟩ = {1, 7}
⟨11⟩ = {1, 11}

Is Z∗
12 cyclic? No it is not, because no element has order 4.
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Discrete Logarithms

If G = ⟨g⟩ is a cyclic group of order m then for every a ∈ G there is a
unique exponent i ∈ Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG,g(a)

The discrete log function is the inverse of the exponentiation function:

DLogG,g(g i) = i for all i ∈ Zm

gDLogG,g (a) = a for all a ∈ G .
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Discrete Logarithms: Example

Let G = Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG,2(a) is the exponent
i ∈ Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG,2(a)

0 1 8 2 4 9 7 3 6 5
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Computing Discrete Logs

Let G = ⟨g⟩ be a cyclic group of order m with generator g ∈ G .

Input: X ∈ G
Desired Output: DLogG,g(X )

That is, we want x such that gx = X .

for x = 0, . . . , m − 1 do
if gx = X then return x

Is this a good algorithm?

It is

Correct (always returns the right answer), but
SLOW!

Run time is O(m) exponentiations, which for G = Z∗
p is O(p), which is

exponential time and prohibitive for large p.
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Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z∗
p is cyclic.

Example: Z∗
11 is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z∗
p| = p − 1 is not prime, so Fact 2 doesn’t imply Fact 1.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA 21/37



Cyclic groups in cryptography

Cryptography knows two main providers of cyclic groups:

Multiplicative groups of finite fields: Z∗
p is the easiest example.

Elliptic curves over finite fields.
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Computing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z∗
p e1.92(ln p)1/3(ln ln p)2/3 (roughly)

subexponential time
ECp

√p = eln(p)/2

exponential time

Here p is a prime and ECp represents an elliptic curve group of order p.

In the first case, if the largest factor of p − 1 is q, there is also a O(√q)
algorithm to solve discrete log.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires a discrete log computation.
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Discrete logarithm computation records

In Z∗
p:

|p| in bits When
431 2005
530 2007
596 2014
768 2016
795 2019

For elliptic curves, current record seems to be for |p| around 114.
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Elliptic curve groups

Elliptic curve groups are commonly used for public-key cryptography now.

The mathematical details are a bit complex.

For now, think of an elliptic curve group as a cyclic group.

This means it has a generator, a group operation (typically written as +),
an order, and one can define the analogue of discrete logarithm in this
group.

The structure of elliptic curve groups does not seem to permit the same
types of subexponential-time discrete logarithm algorithms as Z∗

p.

UCSD CSE107: Intro to Modern Cryptography; Discrete logarithms and RSA 25/37



Why Elliptic curve (EC) groups?

Say we want 80-bit security, meaning discrete log computation by the best
known algorithm should take time 280. Then

If we work in Z∗
p (p a prime) we need to set |Z∗

p| = p − 1 ≈ 21024

But if we work on an elliptic curve group of prime order p then it
suffices to set p ≈ 2160.

This is because

e1.92(ln 21024)1/3(ln ln 21024)2/3 ≈
√

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 T ≈ 1603

21024 10243 ≈ 260T

Exponentiation will be 260 times faster in the smaller group.
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Moore’s law and discrete log hardness

If Moore’s law holds, the computational power of (your preferred
opponent) doubles every 1.5 years.
If you were to adapt your group size for DLOG as a function of time, you
would make sure that:(

time it takes
to solve DLogG

)
≥
(

some wide
security margin

)
× base value× 2year/1.5.

if the time it takes is e(ln p)/2, then ln p would grow linearly with time.
if the time it takes is e1.92(ln p)1/3(ln ln p)2/3 , then ln p would grow as a
cubic function of time.
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DL Formally

Let G = ⟨g⟩ be a cyclic group of order m.

Game DLG,g

procedure Initialize
x $← Zm; X ← gx

return X

procedure Finalize(x ′)
return (x = x ′)

Definition (dl-advantage Advdl)
The dl-advantage of an adversary A is

Advdl
G,g(A) = Pr

[
DLA

G,g ⇒ true
]
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CDH: The Computational Diffie-Hellman Problem

Let G = ⟨g⟩ be a cyclic group of order m with generator g ∈ G . The CDH
problem is:

Input: X = gx ∈ G and Y = gy ∈ G
Desired Output: gxy ∈ G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x ← DLogG,g(X ); Return Y x .

So if one can compute discrete logarithms
then one can solve the CDH problem.

The converse is an open question: are CDH and DL equivalent?
Should they not be equivalent, there would be a way to quickly solve CDH
that avoids computing discrete logarithms. But no such way is known.
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CDH Formally

Let G = ⟨g⟩ be a cyclic group of order m.

Game CDHG,g

procedure Initialize
x , y $← Zm
X ← gx ; Y ← gy

return X , Y

procedure Finalize(Z )
return (Z = gxy )

Definition (cdh-advantage Advcdh)
The cdh-advantage of an adversary A is

Advcdh
G,g(A) = Pr

[
CDHA

G,g ⇒ true
]
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Building cyclic groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this efficiently?
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Building cyclic groups

To find a suitable prime p and generator g of Z∗
p:

Pick numbers p at random until p is a prime of the desired form
Pick elements g from Z∗

p at random until g is a generator

For this to work we need to know

How to test if p is prime
How many numbers in a given range are primes of the desired form
How to test if g is a generator of Z∗

p when p is prime
How many elements of Z∗

p are generators
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Finding primes

Desired: An efficient algorithm that given an integer k returns a prime
p ∈ {2k−1, . . . , 2k − 1} such that q = (p − 1)/2 is also prime.

Alg Findprime(k)
do

p $←{2k−1, . . . , 2k − 1}
until (p is prime and (p − 1)/2 is prime)
return p

How do we test primality?
How many iterations do we need to succeed?
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Primality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , ⌈
√

N⌉ do
if N mod i = 0 then return false

return true

Correct but SLOW! O(
√

N) running time, exponential in |N|.
However, we have polynomial time algorithms, which is much better:

O(|N|3) time randomized algorithms
Even a O(|N|8) time deterministic algorithm

Finding cryptographic size prime numbers is not a difficult problem.
It’s even less of a problem when it only has to be done once.
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Density of primes

Let π(N) be the number of primes in the range 1, . . . , N. So if
p $←{1, . . . , N} then

Pr [p is a prime] = π(N)
N

Fact: π(N) ∼ N
ln(N)

So
Pr [p is a prime] ∼ 1

ln(N)

If N = 21024 this is about 0.001488 ≈ 1/700.

So the number of iterations taken by our algorithm to find a prime is not
too big.
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Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z∗

p.

Alice Bob

x $← Zp−1; X ← gx mod p
X−−−−−−→

y $← Zp−1; Y ← gy mod p
Y←−−−−−−

KA ← Y x mod p KB ← X y mod p

Y x = (gy )x = gxy = (gx )y = X y modulo p, so KA = KB

Adversary is faced with the CDH problem.
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DH Secret Key Exchange: Questions

How do we pick a large prime p, and how large is large enough?
What does it mean for g to be a generator modulo p?
How do we find a generator modulo p?
How can Alice quickly compute x 7→ gx mod p?
How can Bob quickly compute y 7→ gy mod p?
Why is it hard to compute (gx mod p, gy mod p) 7→ gxy mod p?
. . .

The slides have sketched the answers to many of these questions.
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