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Secret key exchange

Problem: Obtain a joint secret key via interaction over a public channel:

Alice Bob

x $← ...; X ← ...
X−−−−−−→

y $← ...; Y ← ...
Y←−−−−−−

KA ← FA(x , Y ) KB ← FB(y , X )

Desired properties of the protocol:

KA = KB, meaning Alice and Bob agree on a key
Adversary given X , Y can’t compute KA
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Secret Key Exchange

Can you build a secret key exchange protocol?

Symmetric cryptography has existed for thousands of years.

But no secret key exchange protocol was found in that time.

Many people thought it was impossible.

In 1976, Diffie and Hellman proposed one.

This was the birth of public-key (asymmetric) cryptography.
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DH Key Exchange Video

http://www.youtube.com/watch?v=3QnD2c4Xovk
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DH Secret Key Exchange

The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Zp−1 = {0, 1, . . . , p − 2}.

Alice Bob

x $← Zp−1; X ← gx mod p
X−−−−−−→

y $← Zp−1; Y ← gy mod p
Y←−−−−−−

KA ← Y x mod p KB ← X y mod p

Y x = (gy )x = gxy = (gx )y = X y modulo p, so KA = KB

Adversary is faced with computing gxy mod p given gx mod p and
gy mod p, which nobody knows how to do efficiently for large p.
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DH Secret Key Exchange: Questions

How do we pick a large prime p, and how large is large enough?
What does it mean for g to be a generator modulo p?
How do we find a generator modulo p?
How can Alice quickly compute x 7→ gx mod p?
How can Bob quickly compute y 7→ gy mod p?
Why is it hard to compute (gx mod p, gy mod p) 7→ gxy mod p?
. . .

To answer all that and more, we will forget about DH secret key exchange
for a while and take a trip into computational number theory ...
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Notation

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a, N ∈ Z let gcd(a, N) be the largest d ∈ Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.
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Integers mod N

For N ∈ Z+, let

ZN = {0, 1, . . . , N − 1}
Z∗

N = {a ∈ ZN : gcd(a, N) = 1}
φ(N) = |Z∗

N |

Example: N = 12

Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Z∗

12 =

{1, 5, 7, 11}
φ(12) = 4
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Division and mod

INT-DIV(a, N) returns (q, r) such that a = qN + r
0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

Definition (The mod operation)

a mod N = r ∈ ZN

is the remainder when a is divided by N.
mod is a two argument (a.k.a. binary) operation, like +, ×, . . .

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Definition (Congruences mod something)
a ≡ b (mod N) means a mod N = b mod N.

Example: 17 ≡ 14 (mod 3)
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Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b ∈ G , a value a · b is defined.

Example: G = Z∗
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Definition (Groups)
We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N ∈ Z+ then G = Z∗
N with a · b = ab mod N is a group.
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Groups
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Groups
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Groups

Let G be a non-empty set, and let ↑ be a binary operation on G . This
means that for every two points a, b ∈ G , a value a ↑ b is defined.

Example: G = Z∗
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Definition (Groups)
We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N ∈ Z+ then G = Z∗
N with a · b = ab mod N is a group.
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Groups: Closure (property 1/4)

Definition (Closure)
Closure: For every a, b ∈ G we have a · b is also in G .
We also say that G is closed under the operation ·.

Example: G = Z12 with a · b = ab does not have closure (is not closed
under multiplication) because 7 · 5 = 35 ̸∈ Z12.
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We also say that G is closed under the operation ·.

Example: G = Z12 with a · b = ab does not have closure (is not closed
under multiplication) because 7 · 5 = 35 ̸∈ Z12.
Example: The set of real numbers in [0, 1] is closed under the operation

x · y = x + y − xy .
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Groups: Closure (property 1/4)

Definition (Closure)
Closure: For every a, b ∈ G we have a · b is also in G .
We also say that G is closed under the operation ·.

Example: G = Z12 with a · b = ab does not have closure (is not closed
under multiplication) because 7 · 5 = 35 ̸∈ Z12.
Fact: If N ∈ Z+ then G = Z∗

N with a · b = ab mod N satisfies closure,
meaning

gcd(a, N) = gcd(b, N) = 1 implies gcd(ab mod N, N) = 1

Example: Let G = Z∗
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 ∈ Z∗
12

Exercise: Prove the above Fact.
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Groups: Associativity (property 2/4)

Definition (Associativity)
Associativity: For every a, b, c ∈ G we have (a · b) · c = a · (b · c).

Fact: If N ∈ Z+ then G = Z∗
N with a · b = ab mod N satisfies

associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:
(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1
5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1
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Groups: Identity element (property 3/4)

Definition ((existence of) Identity element)
Identity element: There exists an element id ∈ G such that
a · id = id · a = a for all a ∈ G .

Fact: If N ∈ Z+ and G = Z∗
N with a · b = ab mod N then 1 is the identity

element because a · 1 mod N = 1 · a mod N = a for all a.
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Groups: Inverses (property 4/4)

Definition (Inverse)
Inverses: For every a ∈ G there exists a unique b ∈ G such that
a · b = b · a = id.
Fact: If N ∈ Z+ and G = Z∗

N with a · b = ab mod N then
∀a ∈ Z∗

N ∃b ∈ Z∗
N such that a · b mod N = 1.

Example: The inverse of 5 in Z∗
12 is the b ∈ Z∗

12 satisfying 5b mod 12 = 1,
so b =

5
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Examples of groups

Fact: If N ≥ 1 is an integer then ZN is a group under the operation of
addition modulo N, namely a · b = (a + b) mod N.

The law is written additively.
The identity element is id = 0, since id + a = a + id = a for all
a ∈ ZN .
The inverse (of a) with respect to the group law + is (−a) mod N.

This example is useless for cryptography.
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Examples of groups

Fact: If N ≥ 2 is an integer then Z∗
N is a group under the operation of

multiplication modulo N, namely a · b = (ab) mod N.

The identity element is id = 1, since id · a = a · id = a for all a ∈ Z∗
N .

The inverse (of a) is computed with the EXT-GCD computation,
which we will study later.

This example is very important for cryptography.
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Examples of groups

Fact: The set of real numbers in [0, 1) is a group under the operation
x · y = x + y − xy .

the identity element is 0
the inverse of x is x

x−1 .

This example is useless for cryptography.
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Examples of groups

Fact: The set of pairs (x , y) of rational numbers such that x2 + y2 = 1 is
a group under the operation:

(c1, s1) · (c2, s2) = (c1c2 − s1s2, c1s2 + c2s1)

the identity element is id = (1, 0).
the inverse of (c, s) is (c,−s).

Examples of elements: (3/5, 4/5), or (5/13, 12/13) (Pythagorean triples).

This example (per se) is not useful for cryptography, but the way it is
defined is interesting because it connects to elliptic curves.
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Some non-examples

Fact: If N ≥ 2 is an integer then ZN is a NOT A GROUP under the
operation of multiplication modulo N.

Because:

The only possible way to define the identity element is id = 1.
But 0 ∈ ZN and there is no way we can find x such that
0x ≡ 1 mod N.

(note that ZN has two distinct operations: addition and multiplication
modulo N, and has what we call a ring structure. Not our topic for the
moment.)

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 18/44



Some non-examples

Fact: If N ≥ 2 is an integer then ZN is a NOT A GROUP under the
operation of multiplication modulo N.

Because:

The only possible way to define the identity element is id = 1.

But 0 ∈ ZN and there is no way we can find x such that
0x ≡ 1 mod N.

(note that ZN has two distinct operations: addition and multiplication
modulo N, and has what we call a ring structure. Not our topic for the
moment.)

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 18/44



Some non-examples

Fact: If N ≥ 2 is an integer then ZN is a NOT A GROUP under the
operation of multiplication modulo N.

Because:

The only possible way to define the identity element is id = 1.
But 0 ∈ ZN and there is no way we can find x such that
0x ≡ 1 mod N.

(note that ZN has two distinct operations: addition and multiplication
modulo N, and has what we call a ring structure. Not our topic for the
moment.)

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 18/44



Some non-examples

What if we take 0 out?
Fact: If N ≥ 4 is a composite integer then ZN is a NOT A GROUP under
the operation of multiplication modulo N.

Because:

The only possible way to define the identity element is id = 1.
But if N = pq then p ∈ ZN and there is no way we can find x such
that px ≡ 1 mod N.

This is the reason why when we multiply modulo N, we want to restrict to
numbers that are coprime to N.
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Group law, many times
Let G be a group and a ∈ G . Given any integer n ≥ 1, we have:

a · a · · · a︸ ︷︷ ︸
n times

∈ G

(and this element is defined with no ambiguity thanks to associativity).
We can say a few things that follow from the definitions.

(a · a · · · a︸ ︷︷ ︸
m times

) · (a · a · · · a︸ ︷︷ ︸
n times

) = a · a · · · a︸ ︷︷ ︸
m + n times

.

If b is the inverse of a in G , then a · a · · · a︸ ︷︷ ︸
n times

· b · b · · · b︸ ︷︷ ︸
n times

= id.

If m > n, a · a · · · a︸ ︷︷ ︸
m times

· b · b · · · b︸ ︷︷ ︸
n times

= a · a · · · a︸ ︷︷ ︸
m − n times

.

If m < n, a · a · · · a︸ ︷︷ ︸
m times

· b · b · · · b︸ ︷︷ ︸
n times

= b · b · · · b︸ ︷︷ ︸
n − m times

.

We want a notation for a · a · · · a︸ ︷︷ ︸
n times

, because it’s a burden.
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Exponentiation

Reminder: the group law · can be ·, +,⊥,⊗, ↑, $, . . .

We need a notation for a · a · · · a︸ ︷︷ ︸
n times

. This is a matter of taste.

If the group law is ·, let’s write a · a · · · a︸ ︷︷ ︸
n times

= an.

If the group law is +, let’s write a + · · ·+ a︸ ︷︷ ︸
n times

= na or [n]a.

If the group law is $, we don’t really know, we’re free to choose
(aSn? who cares. . . ).
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Exponentiation (or multiplication)

Given the notation that we choose, the pieces fit nicely together.
If the notation is · (multiplication-ish), then we talk about exponentiation.

We let a0 = id (and id is often denoted 1).
We let a−1 be the inverse of a in G .
We let a−n = (a−1)n.

This ensures that for all i , j ∈ Z, ai+j = ai · aj

aij = (ai)j = (aj)i

Meaning we can manipulate exponents “as usual”.

Groups using multiplicative notation
Notations are most often multiplicative: x · y and xn.
This is also the preferred notation when we speak of an “abstract” group.
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Exponentiation (or multiplication)

Given the notation that we choose, the pieces fit nicely together.
If the notation is + (addition-ish), then we talk about multiplication.

We let [0]a = id (and id is often denoted 0).
We let [−1]a = −a be the inverse of a in G (wrt the group law +).
We let [−n]a = [n]([−1]a).

This ensures that for all i , j ∈ Z, [i + j]a = [i ]a + [j]a.
[ij]a = [i ]([j]a).

Meaning we can manipulate the multipliers “as usual”.

Groups using additive notation
Additive notations are rare, but exist in cryptography (elliptic curves):
P + Q and [n]P.
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Computational Shortcuts

Fact: Let a, b, c ∈ Z and N ∈ Z+. Then

abc mod N = ((ab mod N) c) mod N

Example: What is 5 · 8 · 10 · 16 mod 21?
Slow way:

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400
6400 mod 21 = 16

Faster way, using above Fact:

5 · 8 mod 21 = 40 mod 21 = 19
19 · 10 mod 21 = 190 mod 21 = 1
1 · 16 mod 21 = 16
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Examples

Let N = 14 and G = Z∗
N . Then modulo N we have

53 =

5 · 5 · 5 ≡ 25 · 5 ≡ 11 · 5 ≡ 55 ≡ 13

and
5−3 = 5−1 · 5−1 · 5−1 ≡ 3 · 3 · 3 ≡ 27 ≡ 13
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Examples

Let N = 14 and G = Z∗
N . Then modulo N we have

58 = 5 · 5 · · · 5︸ ︷︷ ︸
8 times

≡ (5 · 5) · (5 · 5) · · · (5 · 5)︸ ︷︷ ︸
4 times

= (5 · 5)4 ≡ 114

≡ (11 · 11) · (11 · 11) = (11 · 11)2 ≡ ((−3) · (−3))2

≡ 92 ≡ (−5)2 ≡ 25 ≡ 11.

So 58 ≡ 11 (mod 14). Note that we also have 52 ≡ 11 (mod 14).
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Group Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z∗
14 is

6 because

Z∗
14 = {1, 3, 5, 9, 11, 13}

Fact: Let G be a group of order m and a ∈ G . Then, am = id.

Example: Modulo 14 we have

56 ≡ (52)3 ≡ (−3)3 ≡ −27 ≡ 1 (all of this (mod 14))
96 ≡ (93)2 ≡ 7292 ≡ (1)2 ≡ 1 (all of this (mod 14))
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Simplifying exponentiation

Fact: Let G be a group of order m and a ∈ G . Then, am = id.

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Proof: Let (q, r)← INT-DIV(i , m), so that i = mq + r and r = i mod m.
Then

ai = amq+r = (am)q · ar

But am = id by Fact.
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Simplifying exponentiation

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Example: What is 58 mod 14?

Solution: Let G = Z∗
14 and a = 5. Then, m = |Z∗

14| = 6, so

58 mod 14 = 58 mod 6 mod 14
= 52 mod 14
= 11.
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Simplifying exponentiation

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Example: What is 574 mod 21?

Solution: Let G = Z∗
21 and a = 5. We have

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 10}

Thereferore, m = |Z∗
21| = 12, so

574 mod 21 = 574 mod 12 mod 21
= 52 mod 21
= 4.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 28/44



Simplifying exponentiation

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Example: What is 574 mod 21?
Solution: Let G = Z∗

21 and a = 5. We have

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 10}

Thereferore, m = |Z∗
21| = 12, so

574 mod 21 = 574 mod 12 mod 21
= 52 mod 21
= 4.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 28/44



Do not simplify too hastily!

Say you are working modulo N = 762. Pro tip: |Z∗
762| = 252

What is 1720220428 mod 762 ?

You certainly don’t want to compute the integer 1720220428 (which
has about 80 million bits).
You want to reduce the exponent.

The correct way
|Z∗

762| = 252
Reduce the exponent mod252.
20220428 mod 252 = 200.

1720220428 ≡ 17200

≡ (((((17)2)2)2)5)5.

The wrong way
You don’t understand the
distinction between N and
|Z∗

N |.
Reducing mod762 is fine when
doing + or ·,
but WRONG for exponents!
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1720220428 mod 762

1720220428 ≡ 17200

Reduce the exponent
modulo |Z∗

762| = 252

≡ ((((172)2)2)5)5

≡ ((()2)5)5

≡ ((2)5)5

≡ . . .

≡ 661 (mod 762).
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1720220428 mod 762

1720220428 ≡ 17200

Reduce the exponent
modulo |Z∗

762| = 252

≡ ((((172)2)2)5)5

≡ (((2892

Here we can reduce
modulo 762

)2)5)5

≡ ((2)5)5

≡ . . .

≡ 661 (mod 762).

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory 30/44



1720220428 mod 762

1720220428 ≡ 17200

Reduce the exponent
modulo |Z∗

762| = 252

≡ ((((172)2)2)5)5

≡ (((2892)2)5)5

≡ ((463

Because
289 × 289 ≡ 463 (mod 762)

2)5)5

≡ . . .

≡ 661 (mod 762).
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1720220428 mod 762

1720220428 ≡ 17200

Reduce the exponent
modulo |Z∗

762| = 252

≡ ((((172)2)2)5)5

≡ (((2892)2)5)5

≡ ((4632)5)5

≡ . . .

≡ 661 (mod 762).
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Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical numbers are 2512, 21024, 22048: hundreds or thousands of bits.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.
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Algorithms on numbers

The straightforward algorithms have the following complexities:

Algorithm Input Output Time
ADD a, b a + b O(|a|+ |b|)
MULT a, b ab O(|a| · |b|)
INT-DIV a, N q,r O(|a| · |N|)
MOD a, N a mod N O(|a| · |N|)
EXT-GCD a, N (d , a′, N ′) O(|a| · |N|)
MOD-INV a ∈ Z∗

N , N a−1 mod N O(|N|2)
MOD-EXP a ∈ ZN , n, N an mod N O(|n| · |N|2)
EXPG a ∈ G , n an ∈ G O(|n|) G-ops
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Extended gcd

Definition (EXT-GCD)
EXT-GCD(a, N) returns (r , u, v) such that

r = gcd(a, N) = a · u + N · v .

Example: EXT-GCD(12, 20) =

(4, 2,−1) because

4 = gcd(12, 20) = 12 · 2 + 20 · (−1) .
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The (extended) Euclidean algorithm

Algorithm for gcd
To compute the (extended) gcd, we use the (extended) Euclidean
algorithm.
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Extended gcd Algorithm: rough idea

Definition (EXT-GCD)
EXT-GCD(a, N) returns (r , u, v) such that

r = gcd(a, N) = a · u + N · v .

Lemma
Let (q, r) = INT-DIV(a, N). Then, gcd(a, N) = gcd(N, r)

We use this lemma repeatedly.
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Extended gcd Algorithm: code

Alg EXT-GCD(a, N) // (a, N) ̸= (0, 0)
(r0, u0, v0)← (N, 0, 1) // u0a + v0N = r0
(r1, u1, v1)← (a, 1, 0) // u1a + v1N = r1
while r1 ̸= 0

(q, r2)← INT-DIV(r0, r1); // r0 − qr1 = r2
u2 = u0 − qu1
v2 = v0 − qv1 // now u2a + v2N = r2
(r0, u0, v0)← (r1, u1, v1)
(r1, u1, v1)← (r2, u2, v2)

return (r0, u0, v0) // u0a + v0N = r0 = gcd(a, N)
Running time is O(|a| · |N|), so the extended gcd can be computed in
quadratic time. If 0 < a < N then abs(u) ≤ N and abs(v) ≤ a where
abs(·) denotes the absolute value.
Analysis showing all this is non-trivial (worst case is Fibonacci numbers).
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Modular Inverse

For a, N such that gcd(a, N) = 1, we want to compute a−1 mod N,
meaning the unique a′ ∈ Z∗

N satisfying aa′ ≡ 1 (mod N).

But if we let (d , a′, N ′)← EXT-GCD(a, N) then

d = 1 = gcd(a, N) = a · a′ + N · N ′

But N · N ′ ≡ 0 (mod N) so aa′ ≡ 1 (mod N)

Alg MOD-INV(a, N)
(d , a′, N ′)← EXT-GCD(a, N)
return a′ mod N

Modular inverse can be computed in quadratic time.
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Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ≈ 2512 it is prohibitively
expensive.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory, (end of previous lecture) 38/44



Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?
Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ≈ 2512 it is prohibitively
expensive.

UCSD CSE107: Intro to Modern Cryptography; Computational Number Theory, (end of previous lecture) 38/44



Fast exponentiation idea

We can compute

a −→ a2 −→ a4 −→ a8 −→ a16 −→ a32

in just 5 steps by repeated squaring. So we can compute an in i steps
when n = 2i .

But what if n is not a power of 2?
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Square-and-Multiply Exponentiation Example
Suppose the binary length of n is 5, meaning the binary representation of n
has the form b4b3b2b1b0. (We sometimes write n = (b4b3b2b1b0)2.)
Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute an. Our exponentiation algorithm will proceed to
compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = id
y4 = y2

5 · ab4 = ab4

y3 = y2
4 · ab3 = a2b4+b3

y2 = y2
3 · ab2 = a4b4+2b3+b2

y1 = y2
2 · ab1 = a8b4+4b3+2b2+b1

y0 = y2
1 · ab0 = a16b4+8b3+4b2+2b1+b0 .
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Square-and-Multiply Exponentiation Example
Let N = 131, G = Z∗

N , and a = 2 ∈ Z∗
N .

We want to compute a107 mod N.
We start with 107 = 64 + 32 + 0 + 8 + 0 + 2 + 1 = (1101011)2.

(1101011)2 y ← a = 2,

(1101011)2 y ← y2a = a3 = 8,

(1101011)2 y ← y2 = a6 = 64,

(1101011)2 y ← y2a = a13 = 8192 ≡ 70,

(1101011)2 y ← y2 = a26 ≡ 53,

(1101011)2 y ← y2a = a53 ≡ 116,

(1101011)2 y ← y2a = a107 ≡ 57,

So 2107 ≡ 57 (mod 131).
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Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk−1 . . . b0 be the binary representation of n, meaning

n =
k−1∑
i=0

bi2i

Alg EXPG(a, n) // a ∈ G , n ≥ 1
bk−1 . . . b0 ← bin(n)
y ← 1
for i = k − 1 downto 0 do y ← y2 · abi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n, N) returns an mod N in time O(|n| · |N|2), meaning is
cubic time.
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Variants of Square-and-Multiply

There are many variants of the Square-and-Multiply algorithm.

Left-to-Right (a.k.a. most significant bit first), as we presented.
Right-to-Left.
Fixed-window.
Sliding-window.
And more.
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Algorithms on numbers

Algorithm Input Output Time
ADD a, b a + b O(|a|+ |b|)
MULT a, b ab O(|a| · |b|)
INT-DIV a, N q,r O(|a| · |N|)
MOD a, N a mod N O(|a| · |N|)
EXT-GCD a, N (d , a′, N ′) O(|a| · |N|)
MOD-INV a ∈ Z∗

N , N a−1 mod N O(|N|2)
MOD-EXP a ∈ ZN , n, N an mod N O(|n| · |N|2)
EXPG a ∈ G , n an ∈ G O(|n|) G-ops
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