
CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

Apr 21, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 7b

Message Authentication Codes
(we lagged behind a little bit)

MACs from block ciphers

MACs from hash functions

Plan

MACs from block ciphers

MACs from hash functions

ECBC MAC

Definition: ECBC-MAC
Let B = {0, 1}n, and let E : {0, 1}k × B → B be a block cipher.
The encrypted CBC (ECBC) MAC T : {0, 1}2k × B∗ → B is defined by
Alg TKin ∥ Kout(M)
C [0]← 0n

for i = 1, ..., m do
C [i]← EKin(C [i − 1] ⊕ M[i])

T ← EKout(C [m])
return T

EKin

M[1]

0n

EKin

M[2]

EKin

M[3]

. . .

. . .

. . .

. . .

. . .

EKin

M[m]

EKout TKin ∥ Kout(M)

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 1/49

Birthday attacks on MACs

There is a large class of MACs, including ECBC MAC, HMAC, ... which
are subject to a birthday attack that violates UF-CMA using about
q ≈ 2n/2 Tag queries, where n is the tag (output) length of the MAC.

Furthermore, we can typically show this is best possible, so the birthday
bound is the “true” indication of security.

The class of MACs in question are called iterated-MACs and work by
iterating some lower level primitive such as a block cipher or compression
function.

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 2/49

Security of ECBC
Let E : {0, 1}k × B → B be a family of functions, where B = {0, 1}n.
Define F : {0, 1}2k × B∗ → {0, 1}n by
Alg TKin ∥ Kout(M)
C [0]← 0n

for i = 1, ..., m do
C [i]← EKin(C [i − 1] ⊕ M[i])

T ← EKout(C [m])
return T
Theorem: Birthday attack is best possible
Let A be a prf-adversary against F that makes at most q oracle queries,
these totalling at most σ blocks, and has running time t. Then there is a
prf-adversary D against E such that

Advprf
F (A) ≤ Advprf

E (D) + σ2

2n

and D makes at most σ oracle queries and has running time about t.
UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 3/49

Security of iterated MACs

The number q of m-block messages that can be safely authenticated is
about 2n/2/m, where n is the block-length of the block cipher, or the
length of the chaining input of the compression function.

MAC n m q
DES-ECBC-MAC 64 1024 222

AES-ECBC-MAC 128 1024 254

AES-ECBC-MAC 128 106 244

HMAC-SHA1 160 106 260

HMAC-SHA256 256 106 2108

m = 106 means message length 16Mbytes when n = 128.

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 4/49

Non-full messages
So far we assumed messages have length a multiple of the block-length of
the block cipher. Call such messages full. How do we deal with non-full
messages?

M[1] M[2] M[3]

The obvious approach is padding. But how we pad matters.

Padding with 0∗:

M[1] M[2] M[3] ∥ 0∗

adversary A
T ← Tag(1n1n0); Return (1n1n00, T)

This adversary has uf-cma advantage 1.

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 5/49

Non-full messages
So far we assumed messages have length a multiple of the block-length of
the block cipher. Call such messages full. How do we deal with non-full
messages?

M[1] M[2] M[3]

The obvious approach is padding. But how we pad matters.

Padding with 0∗:

M[1] M[2] M[3] ∥ 0∗

adversary A
T ← Tag(1n1n0); Return (1n1n00, T)

This adversary has uf-cma advantage 1.

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 5/49

Non-full messages
So far we assumed messages have length a multiple of the block-length of
the block cipher. Call such messages full. How do we deal with non-full
messages?

M[1] M[2] M[3]

The obvious approach is padding. But how we pad matters.

Padding with 0∗:

M[1] M[2] M[3] ∥ 0∗

adversary A
T ← Tag(1n1n0); Return (1n1n00, T)

This adversary has uf-cma advantage 1.
UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 5/49

Non-full messages

Padding with 10∗: For a non-full message

M[1] M[2] M[3] ∥ 10∗

For a full message

M[1] M[2] M[3] 10∗

This works, but if M was full, an extra block is needed leading to an extra
block cipher operation.

Bear in mind: padding for MACs is a tricky issues, and the padding
methods that are given in the standards are here for a reason!

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 6/49

Plan

MACs from block ciphers

MACs from hash functions

MACing with hash functions

The software speed of hash functions (MD5, SHA1) led people in the
1990s to ask whether they could be used to MAC.

But such cryptographic hash functions are keyless.

Question: How do we key hash functions to get MACs?

Proposal: Let H : D → {0, 1}n represent the hash function and set

TK (M) = H(K ∥M)

Is this UF-CMA / PRF secure?

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 7/49

Length extension attack

h h h. . .
0n

h
H(K ∥M)

K M[1] M[m] ⟨m + 1⟩

h

⟨m + 2⟩

known!

Let M ′ = M ∥ ⟨m + 1⟩. Then

H(K ∥M ′) = h(⟨m + 2⟩ ∥ H(K ∥M))

so given the MAC H(K ∥M) of M we can easily forge the MAC of M ′.

The length extension attack is a very important
attack on MD-like constructions!

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 8/49

Length extension attack

h h h. . .
0n

h
H(K ∥M)

K M[1] M[m] ⟨m + 1⟩

h

⟨m + 2⟩

known!

Let M ′ = M ∥ ⟨m + 1⟩. Then

H(K ∥M ′) = h(⟨m + 2⟩ ∥ H(K ∥M))

so given the MAC H(K ∥M) of M we can easily forge the MAC of M ′.

The length extension attack is a very important
attack on MD-like constructions!

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 8/49

HMAC [BCK96]

Suppose H: D → {0, 1}n is the hash function, built from an underlying
compression function via the MD transform.

Let B ≥ n/8 denote the byte-length of a message block (B = 64 for MD5,
SHA1, SHA256)

Define the following constants

ipad : The byte 36 repeated B times
opad : The byte 5C repeated B times

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 9/49

HMAC [BCK96]

HMAC: {0, 1}n × D → {0, 1}n is defined as follows:
Alg HMAC(K , M)
Kin ← ipad ⊕ K ∥ 08B−n ;
Kout ← opad ⊕ K ∥ 08B−n

X ← H(Ki ∥M) ;
Y ← H(Ko ∥ X)
Return Y

Kin ∥M H

Kout ∥ X H HMACK (M)

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 10/49

HMAC

Features:

Black box use of the hash function, easy to implement
Fast in software

Usage:

As a MAC for message authentication
As a PRF for key derivation

Security:

Subject to a birthday attack
Security proof shows there is no better attack [BCK96,Be06]

Adoption and Deployment: HMAC is one of the most widely
standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec,
FIPS 198, IEEE 802.11, IEEE 802.11b, ...

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 11/49

HMAC Security

Theorem [BCK96]: HMAC is a secure PRF
HMAC is a secure PRF assuming

The compression function is a PRF
The hash function is collision-resistant (CR)

But attacks show MD5 and SHA1 are not CR.

So are HMAC-MD5 and HMAC-SHA1 secure?

No attacks so far, but
Proof becomes vacuous!

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 12/49

HMAC Security

Theorem [Be06]: HMAC is still a secure PRF
HMAC is a secure PRF assuming only

The compression function is a PRF

Current attacks do not contradict this assumption. This result may explain
why HMAC-MD5 and HMAC-SHA1 are standing even though the hash
functions are broken with regard to collision resistance.

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 13/49

HMAC Recommendations

Don’t use HMAC-MD5
No immediate need to remove HMAC-SHA1
HMAC-SHA256, HMAC-SHA512 are fine choices.

SHA3 is not vulnerable to length extension attacks.
SHA3(K ∥M) is a secure MAC, and should definitely be used.
(KMAC)

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes,(we lagged behind a little bit) 14/49

CSE107: Intro to Modern Cryptography
https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

April 21, 2022

UCSD CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Lecture 8

Authenticated Encryption (AE)

Security notions for AE

Generic composition

So many problems with basic CBC-MAC

So Far ...

M
Public network

Alice Bob

Adversary A

We have looked at methods to provide privacy and authenticity separately:

Goal Primitive Security notion
Data privacy symmetric encryption IND-CPA

Data authenticity MAC UF-CMA

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 15/49

Authenticated Encryption

In practice we often want both privacy and authenticity.

Example: A doctor wishes to send medical information M about Alice to
the medical database. Then

We want data privacy to ensure Alice’s medical records remain
confidential.
We want authenticity to ensure the person sending the information is
really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 16/49

Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme AE = (K, E ,D) where

K

K

E DM C
$

C M or ⊥

$

A
(adversary)

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 17/49

Plan

Security notions for AE

Generic composition

So many problems with basic CBC-MAC

Privacy of Authenticated Encryption Schemes

The notion of privacy for symmetric encryption carries over, namely we
want IND-CPA.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 18/49

Integrity of Authenticated Encryption Schemes

Adversary’s goal is to get the receiver to accept a “non-authentic”
ciphertext C .

Integrity of ciphertexts: C is “non-authentic” if it was never transmitted
by the sender.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 19/49

INT-CTXT
Let AE = (K, E ,D) be a symmetric encryption scheme and A an adversary.

Game INTCTXTAE

procedure Initialize
K $←K ; S ← ∅
procedure Enc(M)
C $←EK (M)
S ← S ∪ {C}
Return C

procedure Finalize(C)
M ← DK (C)
if (C ̸∈ S ∧M ̸= ⊥) then

return true
Else return false

Definition: int-ctxt advantage
The int-ctxt advantage of A is

Advint-ctxt
AE (A) = Pr[INTCTXTA

AE ⇒ true]

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 20/49

Integrity with privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in IND-CPA + INT-CTXT.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 21/49

Plain Encryption Does Not Provide Integrity

Alg EK (M)
C [0] $←{0, 1}n
For i = 1, . . . , m do

C [i]← EK (C [i − 1] ⊕ M[i])
Return C

Alg DK (C)
For i = 1, . . . , m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

Question: Is CBC$ encryption INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . . C [m] has a valid decryption.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 22/49

Plain Encryption Does Not Provide Integrity

Alg EK (M)
C [0] $←{0, 1}n
For i = 1, . . . , m do

C [i]← EK (C [i − 1] ⊕ M[i])
Return C

Alg DK (C)
For i = 1, . . . , m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

Question: Is CBC$ encryption INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . . C [m] has a valid decryption.
UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 22/49

Plain Encryption Does Not Provide Integrity
Alg EK (M)
C [0] $←{0, 1}n
For i = 1, . . . , m do

C [i]← EK (C [i − 1] ⊕ M[i])
Return C

Alg DK (C)
For i = 1, . . . , m do

M[i]← E−1
K (C [i]) ⊕ C [i − 1]

Return M

adversary A
C [0]C [1]C [2] $←{0, 1}3n

Return C [0]C [1]C [2]

Then
Advint-ctxt

SE (A) = 1
This violates INT-CTXT.

A scheme whose decryption algorithm never outputs ⊥ cannot provide
integrity!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 23/49

Encryption with Redundancy

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

EK

h(M)

C [m + 1]

Here E : {0, 1}k × {0, 1}n → {0, 1}n is our block cipher and h: {0, 1}∗ →
{0, 1}n is a “redundancy” function, for example

h(M[1] . . . M[m]) = 0n

h(M[1] . . . M[m]) = M[1] ⊕ · · · ⊕ M[m]
A CRC
h(M[1] . . . M[m]) is the first n bits of SHA(M[1] . . . M[m]).

The redundancy is verified upon decryption.
UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 24/49

Encryption with Redundancy

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

EK

h(M)

C [m + 1]

Let E : {0, 1}k × {0, 1}n → {0, 1}n be our block cipher and h: {0, 1}∗ →
{0, 1}n a redundancy function. Let SE = (K, E ′,D′) be CBC$ encryption
and define the encryption with redundancy scheme AE = (K, E ,D) via

Alg EK (M)
M[1] . . . M[m]← M
M[m + 1]← h(M)
C $←E ′

K (M[1] . . . M[m]M[m + 1])
return C

Alg DK (C)
M[1] . . . M[m]T ← D′

K (C)
if (T = h(M[1] ∥ . . . ∥M[m])) then

return M
else return ⊥

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 25/49

Arguments in Favor of Encryption with Redundancy

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

EK

h(M)

C [m + 1]

The adversary will have a hard time producing the last enciphered block of
a new message.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 26/49

Encryption with Redundancy Fails

adversary A
M[1] $←{0, 1}n ; M[2]← h(M[1])
C [0]C [1]C [2]C [3] $← Enc(M[1]M[2])
Return C [0]C [1]C [2]

EK

M[1]

C [1]C [0]

EK

h(M[1])︷ ︸︸ ︷
M[2]

C [2]

EK

h(M[1] ∥M[2])

C [3]

This attack succeeds for any (not secret-key dependent) redundancy
function h.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 27/49

WEP Attack

A “real-life” rendition of this attack broke the 802.11 WEP protocol, which
instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 28/49

Plan

Security notions for AE

Generic composition

So many problems with basic CBC-MAC

Generic Composition

Definition: generic composition method (for AE)
A generic composition method Comp builds an authenticated encryption
scheme AE = (K, E ,D) = Comp[SE , F] by combining

a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

CBC$-AES CTR$-AES . . .
HMAC-SHA1

CMAC
ECBC

...

If Comp lives up to its claims
then any entry works!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 29/49

Generic Composition

Definition: generic composition method (for AE)
A generic composition method Comp builds an authenticated encryption
scheme AE = (K, E ,D) = Comp[SE , F] by combining

a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

A key K = Ke∥Km for AE always consists of a key Ke for SE and a key
Km for F :

Alg K
Ke

$←K′; Km
$←{0, 1}k

Return Ke ||Km

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 29/49

Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method Usage
Encrypt-and-MAC (E&M) SSH
MAC-then-encrypt (MtE) TLS 1.2
Encrypt-then-MAC (EtM) IPSec

We study these following [BN].

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 30/49

Assessing Comp

Given a generic composition method Comp, and a security goal X ∈
{IND-CPA, INT-CTXT}, we ask, does Comp provide X-security? There
are two possible answers:

YES: This means that FOR ALL secure choices of SE , F , the
authenticated encryption scheme AE = Comp[SE , F] is X-secure.
NO: This means that THERE EXIST secure choices of SE , F for
which the authenticated encryption scheme AE = Comp[SE , F] is
NOT X-secure.

Above, secure choices of SE , F means these are IND-CPA-secure and
PRF-secure, respectively.

So a NO does not mean Comp always fails to be X-secure, just that there
are counter-example choices of IND-CPA SE and PRF F for which AE
fails to be X-secure.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 31/49

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 32/49

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA NO

INT-CTXT

Why? T = FKm(M) is a deterministic function of M and allows detection
of repeats.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 32/49

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA NO

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 32/49

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA NO

INT-CTXT NO

Why? May be able to modify C ′ in such a way that its decryption is
unchanged.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 32/49

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)
T ← FKm(M)
C $←E ′

Ke
(M||T)

Return C

Alg DKe ||Km(C)
M||T ← D′

Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 33/49

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)
T ← FKm(M)
C $←E ′

Ke
(M||T)

Return C

Alg DKe ||Km(C)
M||T ← D′

Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT

Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 33/49

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)
T ← FKm(M)
C $←E ′

Ke
(M||T)

Return C

Alg DKe ||Km(C)
M||T ← D′

Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 33/49

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)
T ← FKm(M)
C $←E ′

Ke
(M||T)

Return C

Alg DKe ||Km(C)
M||T ← D′

Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT NO

Why? May be able to modify C in such a way that its decryption is
unchanged.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 33/49

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?
IND-CPA

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 34/49

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT

Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 34/49

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 34/49

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km(M)

C ′ $←E ′
Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km(C ′||T)
M ← D′

Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?
IND-CPA YES

INT-CTXT YES

Why? If C ||T is new then T will be wrong.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 34/49

Two keys or one?

We have used separate keys Ke , Km for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = FK (0) and Km = FK (1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 35/49

Plan

Security notions for AE

Generic composition

So many problems with basic CBC-MAC

Basic CBC-MAC

Basic CBC-MAC is:

Very simple;
as we saw, NOT a secure MAC with variable-length messages;
still, very popular and very well known/widespread;
often, very often badly implemented.

We do have alternatives (ECBC-MAC, or EtM), but let us study the
various ways to fail with basic CBC-MAC.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 36/49

Example: Basic CBC MAC
Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. View a
message M ∈ B∗ as a sequence of n-bit blocks, M = M[1] . . . M[m].

Definition: Basic CBC-MAC
The basic CBC MAC T : {0, 1}k × B∗ → B is defined by

Alg TK (M)
C [0]← 0n

for i = 1, . . . , m do
C [i]← EK (C [i − 1] ⊕ M[i])

return C [m]

EK

M[1]

0n

EK

M[2]

EK

M[3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m] = TK (M)
UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 37/49

Plan

So many problems with basic CBC-MAC
Basic CBC-MAC and variable input length
Basic CBC-MAC with random IV
Same key for MAC and encryption

Splicing attack on basic CBC MAC

Alg TK (M)
C [0]← 0n

for i = 1, . . . , m do
C [i]← EK (C [i − 1] ⊕ M[i])

return C [m]

adversary A
Let x ∈ {0, 1}n
T1 ← Tag(x)
M ← x ∥ T1 ⊕ x
Return M, T1

Then,

EK

x

T1

0n

EK

T1 ⊕ x

T1

TK (M) = EK (EK (x) ⊕ T1 ⊕ x)
= EK (T1 ⊕ T1 ⊕ x)
= EK (x)
= T1

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 38/49

Splicing attack: even worse
The splicing attack is not limited to a small insertion. For example:

Adversary does three queries, gets three tags:
T = Tag(M[1]M[2]M[3]M[4]M[5]M[6]).
U = Tag(M[1]M[2]M[3]).
V = Tag(W [1]W [2]W [3]).

Now let X = V ⊕ U ⊕M[4].
Then T is a valid MAC for the message W [1]W [2]W [3]XM[5]M[6].

EK

W [3]

V

. . .

EK

X

. . .

Because V ⊕ (V ⊕ U ⊕M[4]︸ ︷︷ ︸
X

) = U ⊕M[4], the CBC-MAC chain continues

as in the computation of the first MAC!
UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 39/49

Fixing Basic CBC-MAC with length information
Remember: for hash functions, the Merkle-Damgård (MD) transform was
adding some length information, and that was useful to prove a theorem
about collision resistance.

Sure, but it was meant for a theorem about CR. Not the same
context at all.
Still, it might seem natural to ask whether such a thing does anything
good.

Bottom line:
Appending the length DOES NOT WORK, and fails pretty much in
the same way as in the previous example. (see this link).
Prepending with the length does work. (but some implementations
don’t like this because the length is not necessarily known in
advance. . .).
This is an extra step that lazy implementations think they can do
away with. Bad idea.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 40/49

https://crypto.stackexchange.com/questions/11125/why-does-only-length-prepending-improve-the-security-of-cbc-mac

Fixing Basic CBC-MAC with length information
Remember: for hash functions, the Merkle-Damgård (MD) transform was
adding some length information, and that was useful to prove a theorem
about collision resistance.

Sure, but it was meant for a theorem about CR. Not the same
context at all.
Still, it might seem natural to ask whether such a thing does anything
good.

Bottom line:
Appending the length DOES NOT WORK, and fails pretty much in
the same way as in the previous example. (see this link).
Prepending with the length does work. (but some implementations
don’t like this because the length is not necessarily known in
advance. . .).
This is an extra step that lazy implementations think they can do
away with. Bad idea.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 40/49

https://crypto.stackexchange.com/questions/11125/why-does-only-length-prepending-improve-the-security-of-cbc-mac

Plan

So many problems with basic CBC-MAC
Basic CBC-MAC and variable input length
Basic CBC-MAC with random IV
Same key for MAC and encryption

Wouldn’t a random IV be better than 0n?

Basic CBC-MAC uses 0n as an IV.

EK

M[1]

0n

replace with
random IV ?

EK

M[2]

T

What if we “improve” it to a random value?

Problem: the IV must be somewhere. And in many cases, that means
that it might be controlled by the adversary.
This improvement turns out to be a very bad idea: the adversary can
control the first block of the message.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 41/49

Wouldn’t a random IV be better than 0n?

Basic CBC-MAC uses 0n as an IV.

EK

M[1]

0n

replace with
random IV ?

EK

M[2]

T

What if we “improve” it to a random value?

Problem: the IV must be somewhere. And in many cases, that means
that it might be controlled by the adversary.

This improvement turns out to be a very bad idea: the adversary can
control the first block of the message.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 41/49

Wouldn’t a random IV be better than 0n?

Basic CBC-MAC uses 0n as an IV.

EK

M[1]

0n

replace with
random IV ?

EK

M[2]

T

What if we “improve” it to a random value?

Problem: the IV must be somewhere. And in many cases, that means
that it might be controlled by the adversary.
This improvement turns out to be a very bad idea: the adversary can
control the first block of the message.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 41/49

Plan

So many problems with basic CBC-MAC
Basic CBC-MAC and variable input length
Basic CBC-MAC with random IV
Same key for MAC and encryption

Km and Ke

Using the same key is bad practice.

What if we do this with CBC-MAC?

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 42/49

Exercise

Let E = AES. Let K return a random 128-bit AES key K . Let SE =
(K, E ,D) where E , D are below. Here, X [i] denotes the i-th 128-bit block
of a string whose length is a multiple of 128.

Alg EK (M)
if |M| ≠ 512 then return ⊥
M[1] . . . M[4]← M
Ce[0] $←{0, 1}128 ; Cm[0]← 0128

for i = 1, . . . , 4 do
Ce[i]← EK (Ce[i − 1] ⊕ M[i])
Cm[i]← EK (Cm[i − 1] ⊕ M[i])

Ce ← Ce[0]Ce[1]Ce[2]Ce[3]Ce[4]
T ← Cm[4]; return (Ce , T)

Alg DK ((Ce , T))
if |Ce | ≠ 640 then return ⊥
Cm[0]← 0128

for i = 1, . . . , 4 do
M[i]← E−1

K (Ce[i]) ⊕ Ce[i − 1]
Cm[i]← EK (Cm[i − 1] ⊕ M[i])

if Cm[4] ̸= T then return ⊥
return M

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 43/49

Graphically

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

We want to know whether it is a good idea.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 44/49

In Python/PlayCrypt

def Encrypt(K, M):
assert len(M) % n_bytes == 0
T = int_to_string(0, n_bytes)
C = random_string(n_bytes)
c = C
for m in split(M, n_bytes):

c = E(K, xor_strings(c, m))
C += c
T = E(K, xor_strings(T, m))

C += T
return C

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 45/49

In Python/PlayCrypt

def Decrypt(K, C):
assert len(C) % n_bytes == 0
C = split(C, n_bytes)
received_T = C[-1]
c = C[0]
T = int_to_string(0, n_bytes)
M = ""
for x in C[1:-1]:

m = xor_strings(c, E_I(K, x))
c = x
T = E(K, xor_strings(T, m))
M += m

if T == received_T:
return M

else:
return None

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 46/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE IND-CPA-secure? Why or why not?

The MAC part is deterministic. We cannot have IND-CPA in this
case!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE IND-CPA-secure? Why or why not?
The MAC part is deterministic. We cannot have IND-CPA in this
case!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE INT-CTXT-secure? Why or why not?

This is trickier.
Exercise: show that (0nC [2]C [3], C [3]) is also valid.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE INT-CTXT-secure? Why or why not?
This is trickier.

Exercise: show that (0nC [2]C [3], C [3]) is also valid.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]⊕ C [0]

C [1]0n

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]⊕ C [0]

0n

EK

M[2]

EK

M[3]

EK

M[4]

C [4]

Is SE INT-CTXT-secure? Why or why not?
This is trickier.
Exercise: show that (0nC [2]C [3], C [3]) is also valid.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE an Encrypt-and-MAC construction? Justify your answer.

The generic composition mechanism assumes that Ke and Km are
distinct. If they match, we have the flaws of E&M, and more!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Exercise

EK

M[1]

C [1]C [0]

EK

M[2]

C [2]

EK

M[3]

C [3]

EK

M[4]

C [4]

EK

M[1]

0n

EK

M[2]

EK

M[3]

EK

M[4]

TK (M)

Is SE an Encrypt-and-MAC construction? Justify your answer.
The generic composition mechanism assumes that Ke and Km are
distinct. If they match, we have the flaws of E&M, and more!

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 47/49

Comclusion about CBC-MAC

Basic CBC-MAC has so many possible misuses (including very very bad
ones like Basic CBC-MAC + CTR mode).

There are ways to do it right.
It’s also dangerously close to total blunders.
Never code this sort of “simple thing” on your own. Good AE modes
are here for that.

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 48/49

Authenticated encryption today

Dedicated schemes: OCB, OCBx (x=1,2,3), GCM, CCM, EAX
TLS uses GCM
CAESAR competition to standardize new schemes:
http://competitions.cr.yp.to/caesar.html

UCSD CSE107: Intro to Modern Cryptography; Authenticated Encryption (AE) 49/49

http://competitions.cr.yp.to/caesar.html

	Message Authentication Codes (we lagged behind a little bit)
	MACs from block ciphers
	MACs from hash functions

	Authenticated Encryption (AE)
	Security notions for AE
	Generic composition
	So many problems with basic CBC-MAC
	Basic CBC-MAC and variable input length
	Basic CBC-MAC with random IV
	Same key for MAC and encryption

