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Hash functions (we lagged behind a little bit)

A new set of hash functions
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A new set of hash functions



SHA3

National Institute for Standards and Technology (NIST) held a world-wide
competition to develop a new hash function standard.

Contest webpage:
http://csrc.nist.gov/groups/ST/hash/index.html

Requested parameters:

Design: Family of functions with 224, 256, 384, 512 bit output sizes
Security: CR, one-wayness, near-collision resistance, others...
Efficiency: as fast or faster than SHA2-256

UCSD CSE107: Intro to Modern Cryptography; Hash functions (we lagged behind a little bit) 1/34

http://csrc.nist.gov/groups/ST/hash/index.html


SHA3

Submissions: 64

Round 1: 51

Round 2: 14: BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grostl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein.

Finalists: 5: BLAKE, Grostl, JH, Keccak, Skein.

SHA3: 1: Keccak
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SHA-3 is in the standards

FIPS PUB 202 

FEDERAL INFORMATION PROCESSING STANDARDS 
PUBLICATION 

SHA-3 Standard: Permutation-Based Hash and 
Extendable-Output Functions 

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY 
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SHA-3 can be used in software

Python 3.9.12 (main, Mar 24 2022, 13:02:21)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.31.1 -- An enhanced Interactive Python. Type ’?’ for help.

In [1]: import hashlib
In [2]: hashlib.sha3_256
Out[2]: <function _hashlib.openssl_sha3_256(string=b’’, *, usedforsecurity=True)>
In [3]: hashlib.sha3_256(b"Hello, world").hexdigest()
Out[3]: ’3550aba97492de38af3066f0157fc532db6791b37d53262ce7688dcc5d461856’

If you have up-to-date software, you almost certainly have access to
SHA-3.
But as of 2022, it’s not quite ubiquitous yet.
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SHA3/Keccak: The Sponge construction
SHA3 does not use the MD paradigm used by the MD and SHA2 series.

Absorbing phase Squeezing phase

0r

0c

pad

input

f f f f

truncd

output

f f . . .

c = capacity; r = rate; b = r + c = width; d = digest length;
f : {0, 1}r+c → {0, 1}r+c is a (public, invertible!) permutation.
d is the number of output bits, and c = 2d .
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SHA3/Keccak: more than just hash functions

The SHA-3 family consists of four cryptographic hash functions,
called SHA3-224, SHA3-256, SHA3-384, and SHA3-512, and
two extendable-output functions (XOFs), called SHAKE128 and
SHAKE256.

SHAKE− d : returns any desired number of bits d .

Keccak operation on an input M, aiming for d-bit output

Width of the permutation f is b = 1600. Capacity is c = 2d .
Domain-separation padding:

If computing SHA3-d , pad M to M∗ = M ∥ 01.
If computing SHAKE-d , pad M to M∗ = M ∥ 1111.

Pad to a multiple of the rate r : j ← (−|M∗| − 2) mod r
M† ← M∗ ∥ 1 ∥ 0j ∥ 1.

Run the sponge scheme and output d bits (r at a time).

UCSD CSE107: Intro to Modern Cryptography; Hash functions (we lagged behind a little bit) 6/34



SHA-3 security claims
From FIPS-202:

Function
Output

Size

Security Strengths in Bits

Collision Preimage 2nd Preimage

SHA-1 160 < 80 160 160–L(M)

SHA-224 224 112 224 min(224, 256–L(M))

SHA-512/224 224 112 224 224

SHA-256 256 128 256 256–L(M)

SHA-512/256 256 128 256 256

SHA-384 384 192 384 384

SHA-512 512 256 512 512–L(M)

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256

SHA3-384 384 192 384 384

SHA3-512 512 256 512 512

SHAKE128 d min(d/2, 128) ≥min(d, 128) min(d, 128)

SHAKE256 d min(d/2, 256) ≥min(d, 256) min(d, 256)

Table 4: Security strengths of the SHA-1, SHA-2, and SHA-3 functions
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Message Authentication Codes

Do we need MACs?

PRFs and MACs

MACs from block ciphers
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Integrity and authenticity

M
Public network

Alice Bob

Adversary A

The goal is to ensure that

M really originates with Alice and not someone else
M has not been modified in transit
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Integrity and authenticity example

Alice:
Pay $100 to Charlie

Alice
Bob

(bank)

Adversary A (Eve)

Adversary Eve might

Modify “Charlie” to “Eve”
Modify “$100” to “$1000”

Integrity prevents such attacks.
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Does encryption provide integrity?
Suppose that Alice and her Bank share a secret key K .

Alice sends messages such as
PAY TO ACCOUNT 012345
000010.00

5041590a544f204143434f554e542030
31323334350a3030303031302e30300a

Alice encrypts with AES128-CTR$ and sends to Bank.
393be75f153bf3b65ce9e7531a90db9b
46e736e087e736677e67bd71065bdbb6
d55f7ee1a62d789ab76b54171a74a96c

Bank decrypts and proceeds with the transfer request.
Eve does not know the key, but can nevertheless do:

C[2]=xor_strings(C[2],’\x00’*6 + ’\x09\x09’ + ’\x00’*8)

Message then decrypts to: PAY TO ACCOUNT 012345
990010.00

Encryption alone does NOT provide integrity, especially so when any
ciphertext can decrypt to something.
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Is a hash function a good cryptographic integrity check?

M, T M ′, T ′
Public network

Alice Bob

Adversary AT = H(M) check if T ′ = H(M ′)

Proposal:
Alice sends (M, T = H(M)) using a collision-resistant hash function
like SHA3-256.
Bob receives (M ′, T ′) and checks that T ′ = H(M ′).

Assume the adversary A can read and modify messages in transit.
Does this ensure the integrity of M?

No.
Keyless integrity checks cannot work!
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Adversary AT = H(M) check if T ′ = H(M ′)

Proposal:
Alice sends (M, T = H(M)) using a collision-resistant hash function
like SHA3-256.
Bob receives (M ′, T ′) and checks that T ′ = H(M ′).
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Does this ensure the integrity of M? No.
Keyless integrity checks cannot work!
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Message Authentication Codes (MAC) ; not
A Message Authentication Code (MAC) T : Keys× D → R is a family of
functions. The envisaged usage is shown below, where A is the adversary:

K

K

T
A V

M T T ′

OK or ⊥

$

M ′

We refer to T as the MAC or tag. We have defined

Alg VK (M ′, T ′)
If TK (M ′) = T ′ then return 1 (OK, VALID) else return 0 (⊥, INVALID)
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MAC usage

Sender and receiver share key K .

To authenticate M, sender transmits (M, T ) where T = TK (M).

Upon receiving (M ′, T ′), the receiver accepts M ′ as authentic iff
VK (M ′, T ′) = 1, or, equivalently, iff TK (M ′) = T ′.

The security notion that we want for MACs is called UF-CMA.

Vocabulary: UF-CMA
UF-CMA = Unforgeability against chosen-message attacks
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UF-CMA
Let T : Keys× D → R be a message authentication code. Let A be an
adversary.

Game UFCMAT

procedure Initialize
K $← Keys ; S ← ∅
procedure Tag(M)
T ← TK (M); S ← S ∪ {M}
return T

procedure Finalize(M, T )
If M ∈ S then return false
If M ̸∈ D then return false
Return (T = TK (M))

Definition: uf-cma advantage
The uf-cma advantage of adversary A is

Advuf-cma
T (A) = Pr

[
UFCMAA

T ⇒ true
]
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UF-CMA: Explanations

Adversary A does not get the key K .

It can call Tag with any message M of its choice to get back the correct
tag T = TK (M).

To win, the adversary A must output a message M ∈ D and a tag T that
are

Correct: T = TK (M)
New: M ̸∈ S, meaning M was not a query to Tag

Interpretation: Tag represents the sender and Finalize represents the
receiver. Security means that the adversary can’t get the receiver to
accept a message that is not authentic, meaning was not already
transmitted by the sender.
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UF-CMA properties

If Advuf-cma
T (A) is small for any adversary A, it implies that:

it is hard to do selective forgery: forge a tag on a specific message
that the adversary chooses;
it is hard to find the key K that T uses;
the tag must be long enough! If the tag is only 16 bits, then it is easy
to find an adversary with advantage 2−16.
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Replay

Suppose Alice transmits (M1, T1) to Bank where M1 =“Pay $100 to Bob”.
Adversary

Captures (M1, T1)
Keeps re-transmitting it to bank

Result: Bob gets $100, $200, $300,...

Our UF-CMA notion of security does not ask for protection against replay,
because A will not win if it outputs M, T with M ∈ S, even if T = TK (M)
is the correct tag.

Question: Why not?

Answer: Replay is best addressed as an add-on to standard message
authentication. This can be done using timestamps or synchronized
counters.
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Preventing Replay Using Timestamps

Let TimeA be the time as per Alice’s local clock and TimeB the time as
per Bob’s local clock.

Alice sends (M, TK (M), TimeA)
Bob receives (M, T , Time) and accepts iff T = TK (M) and
|TimeB − Time| ≤ ∆ where ∆ is a small threshold.

Does this work?

Obviously forgery is possible within a ∆ interval. But the main problem is
that TimeA is not authenticated, so adversary can transmit

(M, TK (M), Time1), (M, TK (M), Time2), . . .

for any times Time1, Time2, . . . of its choice, and Bob will accept.
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Preventing Replay Using Timestamps

Let TimeA be the time as per Alice’s local clock and TimeB the time as
per Bob’s local clock.

Alice sends (M, TK (M ∥ TimeA), TimeA)
Bob receives (M, T , Time) and accepts iff TK (M ∥ Time) = T and
|TimeB − Time| ≤ ∆ where ∆ is a small threshold.
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Preventing Replay Using Counters

Alice maintains a counter ctrA and Bob maintains a counter ctrB. Initially
both are zero.

Alice sends (M, TK (M ∥ ctrA)) and then increments ctrA

Bob receives (M, T ). If TK (M ∥ ctrB) = T then Bob accepts and
increments ctrB.

Counters need to stay synchronized.
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Any PRF is a MAC

Theorem [GGM86,BKR96]: F is PRF-secure ⇒ F is UF-CMA-secure
Let F : {0, 1}k × D → {0, 1}n be a family of functions. Let A be a uf-cma
adversary making q Tag queries and having running time t. Then there is
a prf-adversary B such that

Advuf-cma
F (A) ≤ Advprf

F (B) + 1
2n .

Adversary B makes q + 1 queries to its Fn oracle and has running time t
plus some overhead.

We do not prove this here, but we give a little intuition.
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Intuition for why PRFs are UF-CMA-secure

1. Random functions make good (UF-CMA) MACs
2. PRFs are pretty much as good as random functions

For (1), suppose Fn : D → {0, 1}n is random and consider A who

Can query Fn at any points x1, . . . , xq ∈ D it likes
To win, must output x , T such that x /∈ {x1, . . . , xq} but T = Fn(x)

Then,
Pr[A wins] =

1
2n

because A did not query Fn(x).
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Intuition for why PRFs are UF-CMA-secure

1. Random functions make good (UF-CMA) MACs
2. PRFs are pretty much as good as random functions

For (2), consider A who

Can query FK at any points x1, . . . , xq ∈ D it likes
To win, must output x , T such that x /∈ {x1, . . . , xq} but T = FK (x)

If Pr[A wins] is significantly more than 2−n then we are detecting a
difference between FK and a random function.
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PRF domain extension

Definition: Fixed/Variable Input Length
A family of functions F : Keys× D → R is

FIL (Fixed-input-length) if D = {0, 1}ℓ for some ℓ

VIL (Variable-input-length) if D is a “large” set like D = {0, 1}∗ or
D = {M ∈ {0, 1}∗ : 0 < |M| < n2n and |M| mod n = 0 } .

for some n ≥ 1 or ...

We have families we are willing to assume are PRFs, namely block ciphers
and compression functions, but they are FIL.

PRF Domain Extension Problem:
Given a FIL PRF, construct a VIL PRF.
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PRF domain extension

PRF Domain Extension Problem:
Given a FIL PRF, construct a VIL PRF.

Simple examples which don’t work.
More advanced algorithms with block ciphers.
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Example: combine per-block outputs
Let F : Keys× D → R be any FIL PRF. Define T : Keys× D∗ → R as:

FK FK . . . FK

M[1] M[2] . . . M[m]

T1 T2
. . . Tm

TK (M) = T = T1 ⊕ T2 ⊕ · · · ⊕ Tm

This is awfully bad! Adversary with Advuf-cma
T (A) = 1:
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Example: combine per-block outputs
Let F : Keys× D → R be any FIL PRF. Define T : Keys× D∗ → R as:

FK FK . . . FK

M[1] M[2] . . . M[m]

T1 T2
. . . Tm

TK (M) = T = T1 ⊕ T2 ⊕ · · · ⊕ Tm

This is awfully bad! Adversary with Advuf-cma
T (A) = 1:

Query the oracle for the MAC T = T1 ⊕ T2 of a message
M = M[1]M[2].
Swap two blocks: T is a valid MAC of M ′ = M[2]M[1].
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Example: combine per-block outputs
Let F : Keys× D → R be any FIL PRF. Define T : Keys× D∗ → R as:

FK FK . . . FK

M[1] M[2] . . . M[m]

T1 T2
. . . Tm

TK (M) = T = T1 ⊕ T2 ⊕ · · · ⊕ Tm

This is awfully bad! Adversary with Advuf-cma
T (A) = 1:

Other example: 0n is a valid MAC for any repeated message M ∥M.
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Example: combine per-block outputs
Let F : Keys× D → R be any FIL PRF. Define T : Keys× D∗ → R as:

FK FK . . . FK

M[1] M[2] . . . M[m]

T1 T2
. . . Tm

TK (M) = T = T1 ⊕ T2 ⊕ · · · ⊕ Tm

This is awfully bad! Adversary with Advuf-cma
T (A) = 1:

Other example: 0n is a valid MAC for the empty message ε.
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More failing examples

Many variants of the previous example also fail miserably:

Concatenate all the per-block outputs.
Many sorts of simple combinations of the per-block outputs.

We need something better.
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Example: Basic CBC MAC
Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n. View a
message M ∈ B∗ as a sequence of n-bit blocks, M = M[1] . . . M[m].

Definition: Basic CBC-MAC
The basic CBC MAC T : {0, 1}k × B∗ → B is defined by

Alg TK (M)
C [0]← 0n

for i = 1, . . . , m do
C [i ]← EK (C [i − 1] ⊕ M[i ])

return C [m]

EK

M[1]

0n

EK

M[2]

EK

M[3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m] = TK (M)
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Splicing attack on basic CBC MAC

Alg TK (M)
C [0]← 0n

for i = 1, . . . , m do
C [i ]← EK (C [i − 1] ⊕ M[i ])

return C [m]

adversary A
Let x ∈ {0, 1}n
T1 ← Tag(x)
M ← x ∥ T1 ⊕ x
Return M, T1

Then,

EK

x

T1

0n

EK

T1 ⊕ x

T1

TK (M) = EK (EK (x) ⊕ T1 ⊕ x)
= EK (T1 ⊕ T1 ⊕ x)
= EK (x)
= T1

UCSD CSE107: Intro to Modern Cryptography; Message Authentication Codes 28/34



Insecurity of basic CBC MAC

Alg TK (M)
C [0]← 0n

for i = 1, . . . , m do
C [i ]← EK (C [i − 1] ⊕ M[i ])

return C [m]

adversary A
Let x ∈ {0, 1}n
T1 ← Tag(x)
M ← x ∥ T1 ⊕ x
Return M, T1

Then Advuf-cma
T (A) = 1 and A is efficient, so the basic CBC MAC is not

UF-CMA secure.
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PRF domain extension

The basic CBC MAC is a candidate construction but we saw above that

it fails to be UF-CMA
and thus also fails to be a PRF.

We will see solutions that work, including

ECBC: The encrypted CBC-MAC
HMAC: A highly standardized and used hash-function based MAC
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ECBC MAC

Definition: ECBC-MAC
Let B = {0, 1}n, and let E : {0, 1}k × B → B be a block cipher.
The encrypted CBC (ECBC) MAC T : {0, 1}2k × B∗ → B is defined by
Alg TKin ∥ Kout(M)
C [0]← 0n

for i = 1, ..., m do
C [i ]← EKin(C [i − 1] ⊕ M[i ])

T ← EKout(C [m])
return T

EKin

M[1]

0n

EKin

M[2]

EKin

M[3]

. . .

. . .

. . .

. . .

. . .

EKin

M[m]

EKout TKin ∥ Kout(M)
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Birthday attacks on MACs

There is a large class of MACs, including ECBC MAC, HMAC, ... which
are subject to a birthday attack that violates UF-CMA using about
q ≈ 2n/2 Tag queries, where n is the tag (output) length of the MAC.

Furthermore, we can typically show this is best possible, so the birthday
bound is the “true” indication of security.

The class of MACs in question are called iterated-MACs and work by
iterating some lower level primitive such as a block cipher or compression
function.
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Security of ECBC
Let E : {0, 1}k × B → B be a family of functions, where B = {0, 1}n.
Define F : {0, 1}2k × B∗ → {0, 1}n by
Alg TKin ∥ Kout(M)
C [0]← 0n

for i = 1, ..., m do
C [i ]← EKin(C [i − 1] ⊕ M[i ])

T ← EKout(C [m])
return T
Theorem: Birthday attack is best possible
Let A be a prf-adversary against F that makes at most q oracle queries,
these totalling at most σ blocks, and has running time t. Then there is a
prf-adversary D against E such that

Advprf
F (A) ≤ Advprf

E (D) + σ2

2n

and D makes at most σ oracle queries and has running time about t.
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Security of iterated MACs

The number q of m-block messages that can be safely authenticated is
about 2n/2/m, where n is the block-length of the block cipher, or the
length of the chaining input of the compression function.

MAC n m q
DES-ECBC-MAC 64 1024 222

AES-ECBC-MAC 128 1024 254

AES-ECBC-MAC 128 106 244

HMAC-SHA1 160 106 260

HMAC-SHA256 256 106 2108

m = 106 means message length 16Mbytes when n = 128.
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