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New Topic: Hash functions

MD: MD4, MD5, MD6
SHA2: SHA1, SHA224, SHA256, SHA384, SHA512
SHA3: SHA3-224, SHA3-256, SHA3-384, SHA3-512

Their primary purpose is collision-resistant data compression, but they
have many other purposes and properties as well ... A hash function is
often treated like a magic wand ...

Some uses:

Certificates: How you know www.snapchat.com really is Snapchat
Bitcoin
Data authentication with HMAC: TLS, ...

SHA = “Secure Hash Algorithm”
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SHA1 is dead ...
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Definition of a hash function

Definition
A hash function is just a family of functions H : Keys× D → R of
functions, meaning for each K ∈ Keys we have a function HK : D → R
defined by HK (x) = H(K , x). The hash function may be:

keyless if Keys only contains the empty string: Keys = {ε}.
keyed if Keys is a non-trivial set.

The domain D is typically all arbitrary length strings, and the range is
typically a set of fixed-length bit strings.
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“Hash” is a common word

WARNING: a cryptographic hash function has nothing (or very little) to
do with a hash table.

a hash table does use a Key→ Value function, sometimes even called
a hash function. . .
but a cryptographic hash function has to meet much stronger criteria!

A cryptographic hash function would be good (albeit slow) for a hash
table, but not the converse!
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Requirements for cryptographic hash functions

Let h : D → {0, 1}n be some hash function (keyed or not).

Preimage: Given a random y ∈ {0, 1}n, can we find x ∈ D
such that h(x) = y?
Second preimage: Given a random x ∈ D, can we find x ′ ∈ D
such that h(x) = h(x ′)?
Collisions: Can we find two elements x , x ′ ∈ D such that
h(x) = h(x ′)?

These goals are increasingly harder to reach for an adversary.
On the other hand, when we want to define security, it is a stricter

requirement to ask for even collision resistance to be infeasible in
practice.
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Collisions

Definition: collision
A collision for a function h : D → {0, 1}n is a pair x1, x2 ∈ D of points
such that

h(x1) = h(x2), and
x1 ̸= x2.

If |D| > 2n then the pigeonhole principle tells us that there must exist a
collision for h.

We want that even though collisions exist, they are hard to find.
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Collision-resistance of a function family

The formalism considers a family H : Keys×D → R of functions, meaning
for each K ∈ Keys we have a function HK : D → R defined by HK (x) =
H(K , x).

Game CRH

procedure Initialize
K $← Keys
Return K
procedure Fn(x)
Return HK (x)

procedure Finalize(x1, x2)
If (x1 = x2) then return false
If (x1 ̸∈ D or x2 ̸∈ D) then return false
Return (HK (x1) = HK (x2))

Let
Advcr

H (A) = Pr
[
CRA

H ⇒ true
]

.
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Collision-resistance

Game CRH

procedure Initialize
K $← Keys
Return K
procedure Fn(x)
Return HK (x)

procedure Finalize(x1, x2)
If (x1 = x2) then return false
If (x1 ̸∈ D or x2 ̸∈ D) then return false
Return (HK (x1) = HK (x2))

Here, the adversary can see inside the box!
The Return statement in Initialize means that the adversary A gets
K as input. The key K here is not secret!
The Fn oracle uses nothing that the adversary doesn’t know, so it’s
public.

Adversary A takes K and tries to output a collision x1, x2 for HK .
A’s output is the input to Finalize, and the game returns true if the
collision is valid.
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Example

Let N = 2256 and define

H: {1, . . . , N}︸ ︷︷ ︸
Keys

×{0, 1, 2, . . .}︸ ︷︷ ︸
D

→ {0, 1, . . . , N − 1}︸ ︷︷ ︸
R

by
H(K , x) = (x mod K ) .

Q: Is H collision resistant?

A: NO!
Why? (x + K ) mod K = x mod K

adversary A(K )
x1 ← 0 ; x2 ← K ; Return x1, x2

Advcr
H (A) = 1
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Example

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher.
Let H: {0, 1}k × {0, 1}2n → {0, 1}n be defined by

Alg H(K , x [1]x [2])
y ← EK (EK (x [1]) ⊕ x [2]); Return y

Let’s show that H is not collision-resistant by giving an efficient adversary
A such that Advcr

H (A) = 1.

Idea: Pick x1 = x1[1]x1[2] and x2 = x2[1]x2[2] so that
EK (x1[1]) ⊕ x1[2] = EK (x2[1]) ⊕ x2[2]
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Example
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Alg H(K , x [1]x [2])
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Idea: Pick x1 = x1[1]x1[2] and x2 = x2[1]x2[2] so that
EK (x1[1]) ⊕ x1[2] = EK (x2[1]) ⊕ x2[2]

Many possible answers:

adversary A1(K )
x1[1]← 0n ; x2[1]← 1n; x1[2]← EK (x1[1]) ; x2[2]← EK (x2[1])
return x1, x2

Then Advcr
H (A1) = 1 and A1 is efficient, so H is not CR.

UCSD CSE107: Intro to Modern Cryptography; Hash functions 11/42



Example

Alg H(K , x [1]x [2])
y ← EK (EK (x [1]) ⊕ x [2]); Return y

Idea: Pick x1 = x1[1]x1[2] and x2 = x2[1]x2[2] so that
EK (x1[1]) ⊕ x1[2] = EK (x2[1]) ⊕ x2[2]

Many possible answers:

adversary A2(K )
x1 ← 0n1n ; x2[2]← 0n; x2[1]← E−1

K (EK (x1[1]) ⊕ x1[2] ⊕ x2[2])
return x1, x2

Then Advcr
H (A2) = 1 and A2 is efficient, so H is not CR.

Note how we used the fact that A2 knows K and the fact that E is a block
cipher!
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Exercise
Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher. Let D be the set of
all strings whose length is a positive multiple of ℓ.

Define the hash function H: {0, 1}k × D → {0, 1}ℓ as follows:
Alg H(K , M)
M[1]M[2] . . . M[n]← M
C [0]← 0ℓ

For i = 1, . . . , n do
B[i ]← E (K , C [i − 1] ⊕ M[i ]);
C [i ]← E (K , B[i ] ⊕ M[i ])

Return C [n]

0ℓ EK

M[1]

EK EK

M[2]

EK EK

M[3]

EK h

Show that H is not CR by giving an efficient adversary A such that
Advcr

H (A) = 1.
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Keyless hash functions

We say that H: Keys× D → R is keyless if Keys = {ε} consists of just
one key, the empty string.

In this case we write H(x) in place of H(ε, x) or Hε(x).

Practical hash functions like the MD, SHA2 and SHA3 series are keyless.
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SHA256

The hash function SHA256: {0, 1}<264 → {0, 1}256 is keyless, with

Inputs being strings X of any length strictly less than 264

Outputs always having length 256.

Alg SHA256(X ) // |X | < 264

M ← shapad(X ) // |M| mod 512 = 0
M(1)M(2) · · ·M(n) ← M // Break M into 512 bit blocks
H(0)

0 ← 6a09e667 ; H(0)
1 ← bb67ae85 ; · · · ; H(0)

7 ← 5be0cd19

H(0) ← H(0)
0 H(0)

1 · · ·H
(0)
7 // |H(0)

i | = 32, |H(0)| = 256
For i = 1, . . . , n do H(i) ← sha256(M(i) ∥ H(i−1))
Return H(n)

sha256: {0, 1}512+256 → {0, 1}256 is the compression function.
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Padding, and initialization vector H (0)

Alg shapad(X ) // |X | < 264

d ← (447− |X |) mod 512 // Chosen to make |M| a multiple of 512
Let ℓ be the 64-bit binary representation of |X |
M ← X ∥ 1 ∥ 0d ∥ ℓ // |M| is a multiple of 512
return M

The 32-bit word H(0)
j was obtained by taking the first 32 bits of the

fractional part of the square root of the j-th prime number (0 ≤ j ≤ 7).

Question: Why square roots as opposed to simply picking the words at
random and embedding them in the code?

Speculation: Perhaps to prevent suspicion of subversion (planting of a
backdoor)?
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Compression function sha256

Compression function sha256: {0, 1}512+256 → {0, 1}256 takes a
512 + 256 = 768 bit input and returns a 256-bit output.

Alg sha256(x ∥ v) // |x |=512, |v |=256

w ← Esha256(x , v)
w0 · · ·w7 ← w // Break w into 32-bit words
v0 . . . v7 ← v // Break v into 32-bit words
For j = 0, . . . , 7 do hj ← wj + vj
h← h0 . . . h7 // |h| = 256
Return h

Here and on next slide, “+” denotes addition modulo 232.

Esha256: {0, 1}512 × {0, 1}256 → {0, 1}256 is a block cipher with 512-bit
keys and 256-bit blocks.
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Block cipher Esha256

Alg Esha256(x , v) // x is a 512-bit key, v is a 256-bit input
x0 · · · x15 ← x // Break x into 32-bit words
For t = 0, . . . , 15 do Wt ← xt
For t = 16, . . . , 63 do Wt ← σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16
v0 · · · v7 ← v // Break v into 32-bit words
For j = 0, . . . , 7 do Sj ← vj // Initialize 256-bit state S
Fot t = 0, . . . , 63 do // 64 rounds

T1 ← S7 + γ1(S4) + Ch(S4, S5, S6) + Ct + Wt
T2 ← γ0(S0) + Maj(S0, S1, S2)
S7 ← S6 ; S6 ← S5 ; S5 ← S4 ; S4 ← S3 + T1
S3 ← S2 ; S2 ← S1 ; S1 ← S0 ; S0 ← T1 + T2

S ← S0 · · · S7
Return S // 256-bit output
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Internals of block cipher Esha256

On the previous slide:

σ0, σ1, γ0, γ1, Ch, Maj are functions not detailed here.
C1 = 428a2f98, C2 = 71374491, . . . , C63 = c67178f2 are
constants, where Ci is the first 32 bits of the fractional part of the
cube root of the i-th prime.
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SHA256 in action

Try it on the course web page!

Over the years, SHA256 has become commonplace. It is (most
probably) supported by your web browser, which executes the example
above in Javascript.
However, it takes time for such goodies to percolate. No SHA-3 in
there yet (check the documentation for possible updates)
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Usage of hash functions

Uses include hashing the data before signing in creation of certificates,
data authentication with HMAC, key-derivation, Bitcoin, ...

These will have to wait, so we illustrate another use, the hashing of
passwords.
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Authentication via passwords

Client A has a password PW that is also stored by server B
A authenticates itself by sending PW to B over a secure channel
(TLS)

APW PW BPW

Problem: The password will be found by an attacker who compromises
the server.

These types of server compromises are common and often in the news:
Yahoo, Equifax, ...
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Hashed passwords

Client A has a password PW and server stores PW = H(PW ).
A sends PW to B (over a secure channel) and B checks that
H(PW ) = PW

APW PW BPW

Server compromise results in attacker getting PW which should not reveal
PW as long as H is one-way, which is a consequence of
collision-resistance.

But we will revisit this when we consider dictionary attacks!

This is (part of) how client authentication is done on the Internet, for
example login to gmail.com.
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Birthday collision-finding attack

Let H : {0, 1}k ×D → {0, 1}n be a family of functions with |D| > 2n. The
q-trial birthday attack is the following adversary Aq for game CRH :

adversary Aq(K )
for i = 1, . . . , q do xi

$← D ; yi ← HK (xi)
if ∃i , j (i ̸= j and yi = yj and xi ̸= xj) then return xi , xj
else return ⊥

We can analyze this via the birthday problem, and show that

Advcr
H (Aq) ≥ 0.3 · q(q − 1)

2n .

So a collision can usually be found in about q =
√

2n trials.
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Cost of birthday attacks

adversary Aq(K )
for i = 1, . . . , q do xi

$← D ; yi ← HK (xi)
if ∃i , j (i ̸= j and yi = yj and xi ̸= xj) then return xi , xj
else return ⊥

If q ≈ 2n/2, this is expected to succeed.
Cost in memory: ≈ 2n/2 as well.

BUT there are multiple ways to optimize this and obtain (almost) the same
cost with memory O(1). One approach is to look for cycles in the graph

x → H(x)→ H(H(x))→ . . .

It takes time O(2n/2) and memory O(1) to find collisions on a hash
function with n-bit output.
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Birthday attack times

Function n TB
MD4 128 264

MD5 128 264

SHA1 160 280

SHA256 256 2128

SHA512 512 2256

SHA3-256 256 2128

SHA3-512 512 2256

TB is the number of trials to find collisions via a birthday attack.

Design of hash functions aims to make the birthday attack the best
collision-finding attack, meaning it is desired that there be no attack
succeeding in time much less than TB.
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repeat until fully understood

Collision resistance security of a hash function that outputs n bits cannot
exceed n/2-bit security, because of the birthday paradox attack.

(x -bit security means: breaking purportedly takes time ≥ 2x )

preimage and second preimage security are a different story, but these are
weaker notions.
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Compression functions

A compression function is a family h : {0, 1}k × {0, 1}b+n → {0, 1}n of
functions whose inputs are of a fixed size b + n, where b is called the block
size.

E.g. b = 512 and n = 256, in which case

h : {0, 1}k × {0, 1}768 → {0, 1}256

hK

x

v hK (x ∥ v)
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The MD transform

Let h : {0, 1}k × {0, 1}b+n → {0, 1}n be a compression function with
block length b. Let D be the set of all strings of at most 2b − 1 blocks.

The MD transform builds from h a family of functions

H : {0, 1}k × D → {0, 1}n.

Coming next:

How the MD transform works
The nice properties of MD
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MD setup

Given: Compression function h : {0, 1}k × {0, 1}b+n → {0, 1}n.

Build: Hash function H : {0, 1}k × D → {0, 1}n.

Since M ∈ D, its length |M| is a multiple of the block length b.

Definition: length in number of blocks
We let |M|b = |M|/b be the number of b-bit blocks in M.

We parse M as
M[1] . . . M[ℓ]← M .

Note: in PlayCrypt, this is done with M = split(M,b_bytes).

Let ⟨ℓ⟩ denote the b-bit binary representation of ℓ ∈ {0, . . . , 2b − 1}.
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MD transform
Given: Compression function h : {0, 1}k × {0, 1}b+n → {0, 1}n.

Build: Hash function H : {0, 1}k × D → {0, 1}n.

Alg H(K , M)
m← |M|b ; M[m + 1]← ⟨m⟩ ; V [0]← 0n

For i = 1, . . . , m + 1 do
V [i ]← hK (M[i ] ∥ V [i − 1])

Return V [m + 1]

hK hK
0n

. . . hK hK
H(K , M)

M[1] M[2] M[n] ⟨n⟩
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MD preserves CR

Theorem: MD preserves CR
Let h : {0, 1}k × {0, 1}b+n → {0, 1}n be a family of functions and let
H : {0, 1}k × D → {0, 1}n be obtained from h via the MD transform.
Given a cr-adversary AH we can build a cr-adversary Ah such that

Advcr
H (AH) ≤ Advcr

h (Ah)

and the running time of Ah is that of AH plus the time for computing H
on the outputs of AH .

Implications:

h CR ⇒ Advcr
h (Ah) small

⇒ Advcr
H (AH) small

⇒ H CR
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MD is great

Theorem: MD preserves collision resistance
If h is CR, then so is H.

The problem of hashing long inputs has been reduced to the problem
of hashing fixed-length inputs.
There is no need to try to attack H. You won’t find a weakness in it
unless h has one. That is, H is guaranteed to be secure assuming h
is secure.

UCSD CSE107: Intro to Modern Cryptography; Hash functions 32/42



MD is great

There is no need to try to attack H. You won’t find a weakness in it unless
h has one. That is, H is guaranteed to be secure assuming h is secure.

For this reason, MD is the design used in many hash functions,
including the MD and SHA2 series. SHA3 uses a different paradigm.
However, MD is no silver bullet, especially for uses of hash functions
that we will learn about later!
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A candidate compression function
Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Let us define the
keyless compression function h : {0, 1}b+n → {0, 1}n by

h(x ∥ v) = Ex (v) .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1 ∥ v1, x2 ∥ v2 satisfying

Ex1(v1) = Ex2(v2) .

Answer: NO, h is NOT collision-resistant, because the following adversary
A has Advcr

h (A) = 1:

adversary A
x1 ← 0b ; x2 ← 1b ;
v1 ← 0n ; y ← Ex1(v1) ; v2 ← E−1

x2 (y)
Return x1 ∥ v1 , x2 ∥ v2
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The Davies-Meyer compression function

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Let us define the
keyless compression function h : {0, 1}b+n → {0, 1}n by

h(x ∥ v) = Ex (v)⊕ v .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1 ∥ v1, x2 ∥ v2 satisfying

Ex1(v1) ⊕ v1 = Ex2(v2) ⊕ v2 .

Answer: Unclear how to solve this equation, even though we can pick all
four variables.
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The Davies-Meyer compression function

Let E : {0, 1}b ×{0, 1}n → {0, 1}n be a block cipher. Let us define keyless
compression function h : {0, 1}b+n → {0, 1}n by

h(x ∥ v) = Ex (v) v .

This is called the Davies-Meyer method and is used in the MD and SHA2
series of hash functions, modulo that may be replaced by addition.

In particular the compression function sha256 of SHA256 is underlain in
this way by the block cipher Esha256 : {0, 1}512 × {0, 1}256 → {0, 1}256

that we saw earlier, with being replaced by component-wise addition
modulo 232.
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Cryptanalytic attacks

So far we have looked at attacks that do not attempt to exploit the
structure of h.

Can we get better attacks if we do exploit the structure?

Ideally not, but hash functions have fallen short!
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Cryptanalytic attacks against hash functions

When Against Time Who
1993,1996 md5 216 [dBBo,Do]
2004 MD5 1 hour [WaFeLaYu]
2005,2006 MD5 1 minute [LeWadW,Kl]
2005 SHA1 269 [WaYiYu]
2017 SHA1 263.1 [SBKAM]

Collisions found in compression function md5 of MD5 did not yield
collisions for MD5, but collisions for MD5 are now easy.

2017: Google, Microsoft and Mozilla browsers stop accepting SHA1-based
certificates.

The SHA256 and SHA512 hash functions are still viewed as secure,
meaning the best known attack is the birthday attack.
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Flame exploited an MD5 attack
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SHA1 collision: https://shattered.io/

Here are two PDF files that display different content, yet have the same
SHA-1 digest.
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Academic cryptography vs. real-world security

MD5 was known to have weaknesses in the 1990s.
A full collision was computed in 2004.
People are still using MD5 now.

SHA-1’s flaws have been known since 2005.
A full collision was computed in 2017.
Deprecation of SHA-1 has been slowed by intense resistance.

Linus Torvalds on Git’s use of SHA-1: (2020: timid move towards SHA2-256)

I doubt the sky is falling for git as a source
control management tool. Do we want to migrate to another hash? Yes.
Is it "game over" for SHA1 like people want to say? Probably not.

I haven’t seen the attack details, but I bet

(a) the fact that we have a separate size encoding makes it much
harder to do on git objects in the first place

(b) we can probably easily add some extra sanity checks to the opaque
data we do have, to make it much harder to do the hiding of random
data that these attacks pretty much always depend on.
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Academic cryptography vs. real-world security

Problem: Deprecating weak algorithms or parameters breaks backwards
compatibility.

Problem: Many people think they understand cryptography and can make
their own security choices.

Problem: Cryptography is hard.

General Principle: Attacks get better. An “academic” break violating a
theoretical definition of security may lead later on to a “real-world”
vulnerability.
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