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Lecture 5

Symmetric encryption: modes of operation

The mode of operation that must never be used: ECB

Randomized encryption, CBC$ and CTR$

Security analysis



Symmetric Encryption Syntax

A symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms:

K

K

E DM C C M or ⊥

$

A
(adversary)

K is the key generation algorithm.
E is the encryption algorithm; may be randomized.
D is the decryption algorithm; must be deterministic.
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Correct decryption requirement

K

E DM C C M or ⊥

For all K , M we have
DK (EK (M)) = M

More formally: For all keys K that may be output by K, and for all M in
the message space, we have

Pr [DK (EK (M)) = M] = 1 ,

where the probability is over the coins of E .

A scheme will usually specify an associated message space.
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Modes of operation

Block cipher provides parties sharing K with

EK

C

M

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to
n-bit blocks?
The mechanisms that we use to do that are called modes of operation.
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Modes of operation

Modes of operation: our goal
E : {0, 1}k × {0, 1}n → {0, 1}ℓ a family of functions

Usually a block cipher, in which case ℓ = n.

From this fixed-length primitive, we want to build a symmetric encryption
scheme SE = (K, E ,D) that can encrypt arbitrary length messages.

Behold the difference between EK and EK .

Notation: x [i ] is the i-th block of a string x, so that x = x [1] . . . x [m]. All
blocks are n-bits long, except the last one which may be shorter.

Always:
Alg K
K $←{0, 1}k
return K
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Plan

The mode of operation that must never be used: ECB

Randomized encryption, CBC$ and CTR$

Security analysis



ECB: Electronic Codebook Mode
SE = (K, E ,D) where:

Alg EK (M)
for i = 1, . . . , m do

C [i ]← EK (M[i ])
return C

Alg DK (C)
for i = 1, . . . , m do

M[i ]← E−1
K (C [i ])

return M

EK

C [1]

M[1]

EK EK

C [2]

M[2]

. . . EK

C [m]

M[m]

Correct decryption relies on E being a block cipher, so that EK is invertible.
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(In)Security of ECB

Weakness: M1 = M2 ⇒ C1 = C2

Why is the above true? Because EK is deterministic:

EK

C1[1]

M1[1]

. . . EK

C1[n]

M1[n]

EK

C2[1]

M2[1]

. . . EK

C2[n]

M2[n]

Why does this matter?

UCSD CSE107: Intro to Modern Cryptography; Symmetric encryption: modes of operation 6/42



(In)Security of ECB
Suppose we know that there are only two possible messages, Y = 1n and
N = 0n, for example representing

FIRE or DON’T FIRE a missile
BUY or SELL a stock
Vote YES or NO

Then ECB algorithm will be EK (M) = EK (M).

EK

C

M
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(In)Security of ECB

Votes M1, M2 ∈ {Y , N} are ECB encrypted and adversary sees ciphertexts
C1 = EK (M1) and C2 = EK (M2)

EK

C1

M1

EK

C2

M2

Adversary may have cast the first vote and thus knows M1; say M1 = Y .
Then adversary can figure out M2:

If C2 = C1 then M2 must be Y
Else M2 must be N
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The ECB Penguin

ECB
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Is this avoidable?

Let SE = (K, E ,D) be ANY encryption scheme.

Suppose M1, M2 ∈ {Y , N} and

Sender sends ciphertexts C1 ← EK (M1) and C2 ← EK (M2)
Adversary A knows that M1 = Y

Adversary says: If C2 = C1 then M2 must be Y else it must be N.

Does this attack work?

Yes, if E is deterministic. Deterministic encryption is bad. Really bad.
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ECB is always a bad idea

Never, ever use ECB. Never. You will go to hell if you do.

Use of ECB has been the cause of multiple security breaches over the years,
in various contexts. ECB should never have been used in the first place.
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Randomized encryption

For encryption to be secure it must be randomized

That is, algorithm EK flips coins.

If the same message is encrypted twice, we are likely to get back different
answers. That is, if M1 = M2 and we let

C1
$←EK (M1) and C2

$←EK (M2)

then
Pr [C1 = C2]

will (should) be small, where the probability is over the coins of E .
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Randomized encryption

There are many possible ciphertexts corresponding to each message.

If so, how can we decrypt?

We will see examples soon.

EKM DK M

C1
C2

Cr

. . .

. . .
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Randomized encryption

A fundamental departure from classical and conventional notions of
encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to
each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption
mechanisms which associate to each message a number of different
possible ciphertexts.

Note: the block cipher primitive EK is deterministic. That’s fine, as long
as we don’t use it raw.
The mode of operation defining SE has the opportunity to introduce
randomness.
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CBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)
C [0] $←{0, 1}n
for i = 1, . . . , m do

C [i ]← EK (M[i ]⊕ C [i − 1])
return C

Alg DK (C)
for i = 1, . . . , m do

M[i ]← E−1
K (C [i ])⊕ C [i − 1]

return M

EK

M[1]

C [1]C [0] = IV

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]
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CBC$ decryption

EK

M[1]

C [1]C [0] = IV

EK

M[2]

C [2]

EK

M[3]

C [3]

. . .

. . .

. . .

. . .

. . .

EK

M[m]

C [m]

Correct decryption relies on E being a block cipher, so that EK is invertible.

E−1
K

C [1]

M[1]

C [0] = IV

E−1
K

C [2]

M[2]

E−1
K

C [3]

M[3]

. . .

. . .

. . .

. . .

. . .

E−1
K

C [m]

M[m]
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CBC$ implementation

EK

M[i ]

C [i ]C [i − 1] . . .

E−1
K

C [i ]

M[i ]

C [i − 1] . . .

CBC$ encryption is inherently impossible to parallelize, because of the
chaining.
CBC$ decryption is parallelizable.
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CTR$ mode
If X ∈ {0, 1}n and i ∈ N then X + i denotes the n-bit string formed by converting
X to an integer, adding i modulo 2n, and converting the result back to an n-bit
string. Below the message is a sequence of ℓ-bit blocks:

Alg EK (M)
C [0] $←{0, 1}n
for i = 1, . . . , m do

P[i ]← EK (C [0] + i)
C [i ]← P[i ]⊕M[i ]

return C

Alg DK (C)
for i = 1, . . . , m do

P[i ]← EK (C [0] + i)
M[i ]← P[i ]⊕ C [i ]

return M

EK

C [0] + 1

C [1]

M[1]

C [0]

EK

C [0] + 2

C [2]

M[2]

. . .

. . .

EK

C [0] + m

C [m]

M[m]
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CTR$ mode

Alg EK (M)
C [0] $←{0, 1}n
for i = 1, . . . , m do

P[i ]← EK (C [0] + i)
C [i ]← P[i ]⊕M[i ]

return C

Alg DK (C)
for i = 1, . . . , m do

P[i ]← EK (C [0] + i)
M[i ]← P[i ]⊕ C [i ]

return M

D does not use E−1
K !

CTR$ can use a family of functions E that is not required to be a
block cipher.
Encryption and Decryption are parallelizable.
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Voting with CBC$

Suppose we encrypt M1, M2 ∈ {Y , N} (a 1-block message) with CBC$.

EK

M1[1]

C1[1]{0, 1}n $→ C1[0]

EK

M2[1]

C2[1]{0, 1}n $→ C2[0]

Adversary A sees C1 = C1[0]C1[1] and C2 = C2[0]C2[1].

Suppose A knows that M1 = M1[1] = Y .

Can A determine whether M2 = Y or M2 = N?

NO!
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Assessing security

So CBC$ is better than ECB. But is it secure?

CBC$ is widely used so knowing whether it is secure is important

To answer this we first need to decide and formalize what we mean by
secure.
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Security requirements
Suppose sender computes

C1
$←EK (M1) ; · · · ; Cq

$←EK (Mq)

Adversary A has C1, . . . , Cq

What if A
Retrieves K Bad!
Retrieves M1 Bad!

But also we want to hide all partial information about the data stream,
such as

Does M1 = M2?
What is first bit of M1?
What is XOR of first bits of M1, M2?

Something we won’t hide: the length of the message
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What we seek

We want a single “master” property MP of an encryption scheme such
that

MP can be easily specified
We can evaluate whether a scheme meets it
MP implies ALL the security conditions we want: it guarantees that a
ciphertext reveals NO partial information about the plaintext.
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Intuition for definition of IND-CPA

The master property MP is called IND-CPA (indistinguishability under
chosen plaintext attack).

Consider encrypting one of two possible message streams, either

M1
0 , ..., Mq

0

or
M1

1 , ..., Mq
1 ,

where |M i
0| = |M i

1| for all 1 ≤ i ≤ q. Adversary, given ciphertexts C1, . . . ,
Cq and both data streams, has to figure out which of the two streams was
encrypted.

We will even let the adversary pick the messages: It picks (M1
0 , M1

1 ) and
gets back C1, then picks (M2

0 , M2
1 ) and gets back C2, and so on.
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Games for ind-cpa-advantage of an adversary A

Let SE = (K, E ,D) be an encryption scheme

Game LeftSE

procedure Initialize
K $← Keys
procedure LR(M0, M1)
return EK (M0)

Game RightSE

procedure Initialize
K $← Keys
procedure LR(M0, M1)
return EK (M1)

Associated to SE , A are the probabilities

Pr
[
LeftA

SE ⇒ 1
]

Pr
[
RightA

SE ⇒ 1
]

that A outputs 1 in each world. The (ind-cpa) advantage of A is

Advind-cpa
SE (A) = Pr

[
RightA

SE ⇒ 1
]
− Pr

[
LeftA

SE ⇒ 1
]
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Message length restriction

It is required that |M0| = |M1| in any query M0, M1 that A makes to LR.
An adversary A violating this condition is considered invalid.

This reflects that encryption is not aiming to hide the length of messages.
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The measure of success

Advind-cpa
SE (A) ≈ 1 means A is doing well and SE is not ind-cpa-secure.

Advind-cpa
SE (A) ≈ 0 (or ≤ 0) means A is doing poorly and SE resists the

attack A is mounting.

Adversary resources are its running time t and the number q of its oracle
queries, the latter representing the number of messages encrypted.

Security: SE is IND-CPA-secure if Advind-cpa
SE (A) is “small” for ALL A

that use “practical” amounts of resources.

Insecurity: SE is not IND-CPA-secure if we can specify an explicit A that
uses “few” resources yet achieves “high” ind-cpa-advantage.
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ECB is not IND-CPA-secure

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Recall that ECB
mode defines a symmetric encryption scheme SE = (K, E ,D) with

EK (M) = EK (M[1])EK (M[2]) · · ·EK (M[m])
Can we design A so that

Advind-cpa
SE (A) = Pr

[
RightA

SE ⇒ 1
]
− Pr

[
LeftA

SE ⇒ 1
]

is close to 1?

Exploitable weakness of SE : M1 = M2 implies EK (M1) = EK (M2).
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ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · ·EK (M[m]).

adversary A
C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0
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ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · ·EK (M[m]).

adversary A
C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Game RightSE

procedure Initialize
K $← Keys
procedure LR(M0, M1)
return EK (M1)

Then
Pr

[
RightA

SE ⇒ 1
]

=

1

because C1 = EK (0n) and C2 = EK (0n).
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ECB is not IND-CPA secure

adversary A
C1 ← LR(0n, 0n) ; C2 ← LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Advind-cpa
SE (A) =

1︷ ︸︸ ︷
Pr

[
RightA

SE = 1
]
−

0︷ ︸︸ ︷
Pr

[
LeftA

SE = 1
]

= 1

And A is very efficient, making only two queries.

Thus ECB is not IND-CPA secure.
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Why is IND-CPA the “master” property?

We claim that if encryption scheme SE = (K, E ,D) is IND-CPA secure
then the ciphertext hides ALL partial information about the plaintext.

For example, from C1
$←EK (M1) and C2

$←EK (M2) the adversary cannot

get M1

get 1st bit of M1

get XOR of the 1st bits of M1, M2

etc.
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Birthday attack on CTR$
Let E : {0, 1}k × {0, 1}n → {0, 1}ℓ be a family of functions and SE = (K,
E ,D) the corresponding CTR$ symmetric encryption scheme.
Suppose 1-block messages M0, M1 are encrypted:

C0[0]C0[1] $←E(K , M0)

EK

C0[0] + 1

C0[1]

M0[1]

C0[0]

C1[0]C1[1] $←E(K , M1)

EK

C1[0] + 1

C1[1]

M1[1]

C1[0]

Let us say we are lucky If C0[0] = C1[0]. If so:
C0[1] = C1[1] if and only if M0 = M1

So if we are lucky we can detect message equality and violate IND-CPA.
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Birthday attack on CTR$

Let 1 ≤ q < 2n be a parameter and let ⟨i⟩ be integer i encoded as an ℓ-bit
string.

adversary A
for i = 1, ..., q do

C i [0]C i [1] $← LR(⟨i⟩, ⟨0⟩)
S ← {(j , t) : C j [0] = C t [0] and j < t}
If S ̸= ∅, then

(j , t) $← S
If C j [1] = C t [1] then return 1

return 0
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Birthday attack on CTR$: Right game analysis

adversary A
for i = 1, ..., q do

C i [0]C i [1] $← LR(⟨i⟩, ⟨0⟩)
S ← {(j , t) : C j [0] = C t [0] and j < t}
If S ̸= ∅, then

(j , t) $← S
If C j [1] = C t [1] then return 1

return 0

Game RightSE

procedure Initialize
K $← Keys
procedure LR(M0, M1)
C [0] $←{0, 1}n
C [1]← E (K , C [0] + 1) ⊕ M1
return C [0]C [1]

If C j [0] = C t [0] (lucky) then

C j [1] = ⟨0⟩ ⊕ EK (C j [0] + 1) = ⟨0⟩ ⊕ EK (C t [0] + 1) = C t [1]

so
Pr

[
RightA

SE ⇒ 1
]

= Pr [S ̸= ∅] = C(2n, q)
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Birthday attack on CTR$: Left game analysis

adversary A
for i = 1, ..., q do

C i [0]C i [1] $← LR(⟨i⟩, ⟨0⟩)
S ← {(j , t) : C j [0] = C t [0] and j < t}
If S ̸= ∅, then

(j , t) $← S
If C j [1] = C t [1] then return 1

return 0

Game LeftSE

procedure Initialize
K $← Keys
procedure LR(M0, M1)
C [0] $←{0, 1}n
C [1]← E (K , C [0] + 1) ⊕ M0
return C [0]C [1]

If C j [0] = C t [0] (lucky) then

C j [1] = ⟨j⟩ ⊕ EK (C j [0] + 1) ̸= ⟨t⟩ ⊕ EK (C t [0] + 1) = C t [1]

so
Pr

[
LeftA

SE ⇒ 1
]

= 0.
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Birthday attack on CTR$

Advind-cpa
SE (A) = Pr

[
RightA

SE ⇒ 1
]
− Pr

[
LeftA

SE ⇒ 1
]

= C(2n, q)− 0 ≥ 0.3 · q(q − 1)
2n

Conclusion: CTR$ can be broken (in the IND-CPA sense) in about 2n/2

queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.
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Security of CTR$

So far: A q-query adversary can break CTR$ with advantage ≈ q2

2n+1

Question: Is there any better attack?

Answer: NO!

We can prove that the best q-query attack short of breaking the block
cipher has advantage at most

2(q − 1)σ
2n

where σ is the total number of blocks across all messages encrypted.

Example: If q 1-block messages are encrypted then σ = q so the adversary
advantage is not more than 2q2/2n.

For E = AES this means up to about 264 blocks may be securely
encrypted, which is good.
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Example: If q 1-block messages are encrypted then σ = q so the adversary
advantage is not more than 2q2/2n.

For E = AES this means up to about 264 blocks may be securely
encrypted, which is good.

UCSD CSE107: Intro to Modern Cryptography; Symmetric encryption: modes of operation 36/42



Security of CTR$

Theorem: security of CTR$ [BDJR97]
Let E : {0, 1}k × {0, 1}n → {0, 1}ℓ be a family of functions and
SE = (K, E ,D) the corresponding CTR$ symmetric encryption scheme.
Let A be an ind-cpa adversary against SE that has running time t and
makes at most q LR queries, the messages across them totaling at most σ
blocks. Then there is a prf-adversary B against E such that

Advind-cpa
SE (A) ≤ 2 · Advprf

E (B) + 2(q − 1)σ
2n

Furthermore, B makes at most σ oracle queries and has running time
t + Θ(σ · (n + ℓ)).
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Intuition

We won’t prove this, but let’s give some intuition.

We assume for simplicity that both messages in each LR query of A are m
blocks long. Thus σ = mq.

Note a block is ℓ bits, so each message in a query is mℓ bits.

We let Ci = Ci [0]Ci [1] . . . Ci [m] denote the response of the LR oracle to
A’s i-th query.
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Intuition for IND-CPA security of CTR$

Consider the CTR$ scheme with EK replaced by a random function F with
range {0, 1}ℓ.

Alg EF(M)
C [0] $←{0, 1}n
for i = 1, . . . , m do

P[i ]← F(C [0] + i)
C [i ]← P[i ]⊕M[i ]

return C

F

C [0] + 1

C [1]

M[1]

C [0]

F

C [0] + 2

C [2]

M[2]

. . .

. . .

F

C [0] + m

C [m]

M[m]

Analyzing this is a thought experiment, but we can ask whether it is
IND-CPA secure.

If so, the assumption that E is a PRF says CTR$ with E is IND-CPA
secure.
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CTR$ with a random function

Let W be the event that the points
C1[0] + 1, . . . , C1[0] + m, . . . , Cq[0] + 1, . . . , Cq[0] + m ,

on which F is evaluated across the q encryptions, are all distinct.

Case 1: W happens. Then the encryption is a one-time-pad: ciphertexts
are random, independent strings, regardless of which message is encrypted.
So A has zero advantage.

Case 2: W doesn’t happen. Then A may have high advantage but it does
not matter because Pr[W ] doesn’t happen is small. (It is the small
additive term in the theorem.)
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Security of CBC$

Theorem: security of CBC$ [BDJR97]
Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher and SE = (K, E ,D)
the corresponding CBC$ symmetric encryption scheme. Let A be an
ind-cpa adversary against SE that has running time t and makes at most
q LR queries, the messages across them totaling at most σ blocks. Then
there is a prf-adversary B against E such that

Advind-cpa
SE (A) ≤ 2 · Advprf

E (B) + σ2

2n

Furthermore, B makes at most σ oracle queries and has running time
t + Θ(σ · n).
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CBC must be used with extreme caution

CBC mode is IND-CPA secure, but vulnerable both in theory and practice
to chosen ciphertext attacks, which we will cover in future lectures.

Probably best to avoid using it because of the difficulty of implementing it
securely.
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