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Exhaustive Key Search attack

Let E : Keys× D→ R be a function family with Keys = {T1, . . . , TN} and
D = {x1, . . . , xd}. Let 1 ≤ q ≤ d be a parameter.

adversary Aeks

For j = 1, . . . , q do Mj ← xj ; Cj ← Fn(Mj)
For i = 1, . . . , N do
if (∀j ∈ {1, . . . , q} : E (Ti , Mj) = Cj) then return Ti

Question: What is Advkr
E (Aeks)?

Answer: It equals 1.

Because

There is some i such that Ti = K , and
K is consistent with (M1, C1), . . . , (Mq, Cq).
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Let E : Keys× D→ R be a function family with Keys = {T1, . . . , TN} and
D = {x1, . . . , xd}. Let 1 ≤ q ≤ d be a parameter.

adversary Aeks

For j = 1, . . . , q do Mj ← xj ; Cj ← Fn(Mj)
For i = 1, . . . , N do
if (∀j ∈ {1, . . . , q} : E (Ti , Mj) = Cj) then return Ti

Question: What is Advtkr
E (Aeks)?

Answer: Hard to say! Say K = Tm but there is a i < m such that
E (Ti , Mj) = Cj for 1 ≤ j ≤ q. Then Ti , rather than K , is returned.

In practice if E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ is a “real” block cipher and
q > k/ℓ, we expect that Advtkr

E (Aeks) is close to 1 because K is likely the
only key consistent with the input-output examples.
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How long does exhaustive key search take?

DES can be computed at well over 10 Gbits/sec in hardware.

DES plaintext = 64 bits

Chip can perform 1010/64 = 1.625× 108 DES computations per second

Expect Aeks (q = 1) to succeed in 255 DES computations, so it takes time

255

1.625× 108 ≈ 2.2× 108 seconds

≈ 7 years!

Small optimization with “Key Complementation” ⇒ 3.5 years

This is (somewhat) prohibitive. Does this mean DES is secure?
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Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find/exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage
close to one and running time smaller than 256 DES computations:

Attack when q, running time

Differential cryptanalysis 1992 247

Linear cryptanalysis 1993 244

But merely storing 244 input-output pairs requires 281 Terabytes.

In practice these attacks were prohibitively expensive.
Note: DES withstood differential cryptanalysis attacks quite well. This
was the explanation for the S-boxes tables in its design.
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EKS revisited

adversary Aeks

For j = 1, . . . , q do Mj ← xj ; Cj ← Fn(Mj)
For i = 1, . . . , N do
if (∀j ∈ {1, . . . , q} : E (Ti , Mj) = Cj) then return Ti

Observation: The E computations can be performed in parallel!

In 1993, Wiener designed a dedicated DES-cracking machine:

$1 million
57 chips, each with many, many DES processors
Finds key in 3.5 hours
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RSA DES challenges

K $←{0, 1}56 ; Y ← DES(K , X ) ; Publish Y on website.
Reward for recovering X

Challenge Post Date Reward Result
I 1997 $10,000 Distributed.Net: 4

months
II 1998 Depends how

fast you find
key

Distributed.Net: 41 days.
EFF: 56 hours

III 1998 As above < 28 hours
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DES security summary

DES is considered broken because its short key size permits rapid key
search.

But DES is a very strong design as evidenced by the fact that there are no
practical attacks that exploit its structure.
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2DES

Block cipher 2DES : {0, 1}112 × {0, 1}64 → {0, 1}64 is defined by

2DESK1K2(M) = DESK2(DESK1(M))

Exhaustive key search takes 2112 DES computations, which is too
much even for machines
Resistant to differential and linear cryptanalysis.
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Meet-in-the-middle attack on 2DES

Suppose K1K2 is a target 2DES key and adversary has M, C such that

C = 2DESK1K2(M) = DESK2(DESK1(M))

Then
DES−1

K2
(C) = DESK1(M)
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Meet-in-the-middle attack on 2DES

Suppose DES−1
K2

(C) = DESK1(M) and T1, . . . , TN are all possible DES
keys, where N = 256.

K1 →

T1 DES(T1, M)

Ti DES(Ti , M)

TN DES(TN , M)
Table L

equal←→

DES−1(T1, C) T1

DES−1(Tj , C) Tj

DES−1(TN , C) TN

Table R

← K2

Attack idea:

Build L,R tables

Find i , j s.t. L[i ] = R[j]
Guess that K1K2 = TiTj
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Meet-in-the-middle attack on 2DES

Let T1, . . . , T256 denote an enumeration of DES keys.

adversary AMinM

M1 ← 064; C1 ← Fn(M1)
for i = 1, . . . , 256 do L[i ]← DES(Ti , M1)
for j = 1, . . . , 256 do R[j]← DES−1(Tj , C1)
S ← { (i , j) : L[i ] = R[j] }
Pick some (l , r) ∈ S and return Tl ∥ Tr

This uses q = 1 plaintext-ciphertext pair and is unlikely to return the
target key. For that one should extend the attack to a larger value of q.
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Running time of Meet-in-the-middle attack

adversary AMinM

M1 ← 064; C1 ← Fn(M1)
for i = 1, . . . , 256 do L[i ]← DES(Ti , M1)
for j = 1, . . . , 256 do R[j]← DES−1(Tj , C1)
S ← { (i , j) : L[i ] = R[j] }
Pick some (l , r) ∈ S and return Tl ∥ Tr

Let TDES be the time to compute DES or DES−1.

Let k = 56 be the key length. Let ℓ = 64 be the block length.

Each “for” loop takes O(2k · TDES) time.

To create S, we can sort the tables and then compare entries. Recall that
sorting a size N list takes O(N log(N)) comparisons. So the time for this
step is O(kℓ · 2k). Why? N = 2k , and comparison is O(ℓ).
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Running time of Meet-in-the-middle attack

adversary AMinM

M1 ← 064; C1 ← Fn(M1)
for i = 1, . . . , 256 do L[i ]← DES(Ti , M1)
for j = 1, . . . , 256 do R[j]← DES−1(Tj , C1)
S ← { (i , j) : L[i ] = R[j] }
Pick some (l , r) ∈ S and return Tl ∥ Tr

Let TDES be the time to compute DES or DES−1.

Let k = 56 be the key length. Let ℓ = 64 be the block length.

Overall attack takes time O(2k · (TDES + kℓ)).

In practice this should be around 257 DES/DES−1 operations, which is
about the same as the cost of exhaustive key search on DES itself.
BUT: this also costs 256 memory, which is a significant problem.
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3DES

Block ciphers

3DES3 : {0, 1}168 × {0, 1}64 → {0, 1}64

3DES2 : {0, 1}112 × {0, 1}64 → {0, 1}64

are defined by

3DES3K1 ∥ K2 ∥ K3(M) = DESK3(DES−1
K2

(DESK1(M)))

3DES2K1 ∥ K2(M) = DESK2(DES−1
K1

(DESK2(M)))

Meet-in-the-middle attack on 3DES3 reduces its “effective” key length to
112.
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Block size limitation

Later we will see “birthday” attacks that “break” a block cipher
E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ in time 2ℓ/2

For DES this is 264/2 = 232 which is small, and this is unchanged for 2DES
and 3DES.

Would like a larger block size.

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Pseudo-random functions 14/54



Plan

Attacks on DES

Beyond DES

AES

Further security metrics

PRF security and the birthday bound



AES

1998: NIST announces competition for a new block cipher
key length 128 (+ requirement to have several other possible lengths)
block length 128
faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

2001: NIST selects Rijndael to be AES.
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AES: versions

AES has several different versions.

128-bit key.
192-bit key.
256-bit key.

The block length is 128 bits in all cases. Only the key schedule and the
number of rounds vary (10, 12, 14);.
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AES

function AESK (M)
(K0, . . . , K10)← expand(K )
s ← M ⊕ K0
for r = 1 to 10 do

s ← S(s)
s ← shift-rows(s)
if r ≤ 9 then s ← mix-cols(s) fi
s ← s ⊕ Kr

end for
return s

Fewer tables than DES
Finite field operations
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The AES movie

http://www.youtube.com/watch?v=H2LlHOw_ANg
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Implementing AES

Code size Performance
Pre-compute and store
round function tables largest fastest

Pre-compute and store
S-boxes only smaller slower

No pre-computation smallest slowest

AES-NI: Hardware for AES, now present on most processors.
Your laptop has it! Can run AES at around 1 cycle/byte. VERY fast!
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Security of AES

Best known key-recovery attack [BoKhRe11] takes 2126.1 time, which is
only marginally better than the 2128 time of EKS.

There are attacks on reduced-round versions of AES as well as on its
sibling algorithms AES192, AES256. Many of these are “related-key”
attacks.

After 20 years, AES has withstood a great number of attack attempts,
which have barely made a dent. This shows the strength of the design.

Exercise: given 1 year ≈ 225 seconds:
2128 operations with 220 cores at 8 GHz (233 Hz) =

250 years (≈ a
quadrillion years).
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Limitations of security against key recovery

So far, a block cipher has been viewed as secure if it resists key recovery,
meaning there is no efficient adversary A having Advkr

E (A) ≈ 1.

Is security against key recovery enough?

Not really. For example define E : {0, 1}128 × {0, 1}256 → {0, 1}256 by

EK (M[1]M[2]) = M[1]∥AESK (M[2])

This is as secure against key-recovery as AES, but not a “good”
blockcipher because half the message is in the clear in the ciphertext.
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So what?

Possible reaction: But DES, AES are not designed like E above, so why
does this matter?

Answer: It tells us that security against key recovery is not, as a
block-cipher property, sufficient for security of uses of the block cipher.

As designers and users we want to know what properties of a block cipher
give us security when the block cipher is used.
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So what is a “good” block cipher?

Possible Properties Necessary? Sufficient?
security against key recovery YES NO!
hard to find M given C = EK (M) YES NO!
...

We can’t define or understand security well via some such (indeterminable)
list.

We want a single “master” property of a block cipher that is sufficient to
ensure security of common usage of the block cipher.
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Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of a
human?

Possible answers:

It can be happy
It recognizes pictures
It can multiply
But only small numbers!

Clearly, no such list is a satisfactory answer to the question.
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Turing Intelligence Test

Q: What does it mean for a program to be “intelligent” in the sense of a
human?

Turing’s answer: A program is intelligent if its input/output behavior is
indistinguishable from that of a human.
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Turing Intelligence Test

Behind the wall:

Room 1: The program P
Room 0: A human
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Turing Intelligence Test

Game:

Put tester in room 0 and let it interact with object behind wall
Put tester in room 1 and let it interact with object behind wall
Now ask tester: which room was which?

The measure of “intelligence” of P is the extent to which the tester fails.
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Real versus Ideal

Notion Real object Ideal object
Intelligence Program Human

PRF Block cipher ?
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Real versus Ideal

Notion Real object Ideal object
Intelligence Program Human

PRF Block cipher Random function
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Random functions

Game RandR (R is a set)

procedure Initialize
T []← (⊥ for all x)
procedure Finalize(x)
Return x

procedure Fn(x)
if T[x ] = ⊥ then

T[x ] $← R
return T[x ]

Adversary A will play this game.
A makes queries to Fn
Eventually A halts with some true/false output.
The game’s outcome is exactly A’s output.

We denote by
Pr

[
RandA

R ⇒ d
]

the probability that A outputs d
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Random functions

Game Rand{0,1}3

procedure Initialize
T []← (⊥ for all x)
procedure Finalize(x)
Return x

procedure Fn(x)
if T[x ] = ⊥ then

T[x ] $←{0, 1}3
return T[x ]

adversary A
y ← Fn(01) // just an arbitrary query
return (y = 000)

Pr
[
RandA

{0,1}3 ⇒ true
]

=

2−3

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Pseudo-random functions 30/54



Random functions

Game Rand{0,1}3

procedure Initialize
T []← (⊥ for all x)
procedure Finalize(x)
Return x

procedure Fn(x)
if T[x ] = ⊥ then

T[x ] $←{0, 1}3
return T[x ]

adversary A
y ← Fn(01) // just an arbitrary query
return (y = 000)

Pr
[
RandA

{0,1}3 ⇒ true
]

= 2−3

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Pseudo-random functions 30/54



Random functions

Game Rand{0,1}3

procedure Initialize
T []← (⊥ for all x)
procedure Finalize(x)
Return x

procedure Fn(x)
if T[x ] = ⊥ then

T[x ] $←{0, 1}3
return T[x ]

adversary A
y1 ← Fn(00)
y2 ← Fn(11)
return (y1 = 010 ∧ y2 = 011)

Pr
[
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]

=

2−6
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Random functions
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Recall: Function families

Definition: family of functions
A family of functions (also called a function family) is a two-input function

F : Keys× D→ R.

Notation: For K ∈ Keys we let

FK :
{

D → R
x 7→ F (K , x)

In other words, FK (x) = F (K , x) for any x ∈ D.

Examples:

DES: Keys = {0, 1}56, D = R = {0, 1}64

Any block cipher: D = R and each FK is a permutation
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Real versus Ideal

Notion Real object Ideal object
PRF Family of functions Random function

(eg. a block cipher)

F is a PRF if the input-output behavior of FK looks to a tester like the
input-output behavior of a random function.

F is not a PRF if a tester can tell the input-output behavior of Fk apart
from the input-output behavior of a random function.
Note that the tester does not have to get the key K to succeed!
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Games defining prf advantage of an adversary against F
Let F : Keys× D→ R be a family of functions.

Game RealF
procedure Initialize
K $← Keys
procedure Finalize(x)
Return x

procedure Fn(x)
return FK (x)

Game RandR

procedure Initialize
T []← (⊥ for all x)
procedure Finalize(x)
Return x

procedure Fn(x)
if T[x ] = ⊥ then

T[x ] $← R
return T[x ]

The adversary A will play both games, and must tell which is which.
A’s output is a guess.
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PRF advantage
A’s output d Intended meaning

1 I think I am in game Real
0 I think I am in game Rand

Associated to F , A are the probabilities

Pr
[
RealAF ⇒ 1

]
and Pr

[
RandA

R ⇒ 1
]

that A outputs 1 in each world.

Definition of Advprf

The advantage of A is

Advprf
F (A) = Pr

[
RealAF ⇒ 1

]
− Pr

[
RandA

R ⇒ 1
]

Advprf
F (A) ≈ 1 means A is doing well and F is not prf-secure.

Advprf
F (A) ≈ 0 (or ≤ 0) means A is doing poorly and F resists the attack

A is mounting.
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PRF security

Adversary advantage depends on its

strategy
resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if Advprf
F (A) is “small” for ALL A that use

“practical” amounts of resources.

Example: 80-bit security could mean that for all n = 1, . . . , 80 we have

Advprf
F (A) ≤ 2−n

for any A with time and number of oracle queries at most 280−n.

Insecurity: F is insecure (not a PRF) if we can specify an A using “few”
resources that achieves “high” advantage.
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Plan

Further security metrics
Real versus Ideal
The prf advantage
An Example



Example
Define F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ by FK (x) = K ⊕ x for all
K , x ∈ {0, 1}ℓ. Is F a secure PRF?

Game RealF
procedure Initialize
K $←{0, 1}ℓ

procedure Fn(x)
Return K ⊕ x

Game Rand{0,1}ℓ

procedure Fn(x)
if T[x ] = ⊥ then T[x ] $←{0, 1}ℓ
Return T[x ]

So we are asking: Can we design a low-resource A so that

Advprf
F (A) = Pr

[
RealAF ⇒ 1

]
− Pr

[
RandA

{0,1}ℓ ⇒ 1
]

is close to 1?

Exploitable weakness of F : For all K we have
FK (0ℓ)⊕ FK (1ℓ) = (K ⊕ 0ℓ)⊕ (K ⊕ 1ℓ) = 1ℓ
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Example: The adversary

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A
if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0
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Example: Real game analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A
if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game RealF
procedure Initialize
K $←{0, 1}ℓ

procedure Fn(x)
Return K ⊕ x

We have
Pr

[
RealAF ⇒ 1

]
=

1

because

Fn(0ℓ)⊕ Fn(1ℓ) = FK (0ℓ)⊕ FK (1ℓ) = (K ⊕ 0ℓ)⊕ (K ⊕ 1ℓ) = 1ℓ
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Example: Rand game analysis

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A
if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Game Rand{0,1}ℓ

procedure Fn(x)
if T[x ] = ⊥ then T[x ] $←{0, 1}ℓ
Return T[x ]

We have

Pr
[
RandA

{0,1}ℓ ⇒ 1
]

=

Pr
[
Fn(1ℓ)⊕ Fn(0ℓ) = 1ℓ

]
= 2−ℓ

because Fn(0ℓ), Fn(1ℓ) are random ℓ-bit strings.
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Example: Conclusion

F : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ is defined by FK (x) = K ⊕ x .

adversary A
if Fn(0ℓ)⊕ Fn(1ℓ) = 1ℓ then return 1 else return 0

Then

Advprf
F (A) =

1︷ ︸︸ ︷
Pr

[
RealAF ⇒ 1

]
−

2−ℓ︷ ︸︸ ︷
Pr

[
RandA

{0,1}ℓ ⇒ 1
]

= 1− 2−ℓ

and A is efficient (2 queries and very simple computation).

Conclusion: F is not a secure PRF.
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Plan

PRF security and the birthday bound
Happy birthday
Block ciphers as PRFs



Birthday Problem
We have q people 1, . . . , q with birthdays y1, . . . , yq ∈ {1, . . . , 365}.
Assume each person’s birthday is a random day of the year. Let

C(365, q) = Pr [2 or more persons have same birthday]
= Pr [y1, . . . , yq are not all different]

What is the value of C(365, q)?
How large does q have to be before C(365, q) is at least 1/2?

Naive intuition:

C(365, q) ≈ q/365
q has to be around 365

The reality

C(365, q) ≈ q2/2/365
q has to be only around 23
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Birthday collision bounds

C(365, q) is the probability that some two people have the same birthday
in a room of q people with random birthdays

q C(365, q)
15 0.253
18 0.347
20 0.411
21 0.444
23 0.507
25 0.569
27 0.627
30 0.706
35 0.814
40 0.891
50 0.970
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Birthday Problem

Pick y1, . . . , yq
$←{1, . . . , N} and let

C(N, q) = Pr [y1, . . . , yq not all distinct]

Birthday setting: N = 365

Fact: C(N, q) ≈ q2

2N
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Birthday collisions formula

Let y1, . . . , yq
$←{1, . . . , N}. Then

1− C(N, q) = Pr [y1, . . . , yq all distinct]

= 1 · N − 1
N · N − 2

N · · · · · N − (q − 1)
N

=
q−1∏
i=1

(
1− i

N

)
so

C(N, q) = 1−
q−1∏
i=1

(
1− i

N

)
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Birthday bounds

Let
C(N, q) = Pr [y1, . . . , yq not all distinct]

Fact: Then
0.3 · q(q − 1)

N ≤ C(N, q) ≤ 0.5 · q(q − 1)
N

where the lower bound holds for 1 ≤ q ≤
√

2N.
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Block ciphers as PRFs

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher.

Game RealE
procedure Initialize
K $← Keys
procedure Fn(x)
return EK (x)

Game Rand{0,1}ℓ

procedure Fn(x)
if T[x ] = ⊥ then T[x ] $←{0, 1}ℓ
Return T[x ]

Can we design A so that

Advprf
E (A) = Pr

[
RealAE ⇒ 1

]
− Pr

[
RandA

{0,1}ℓ ⇒ 1
]

is close to 1?
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Block ciphers as PRFs

Defining property of a block cipher: EK is a permutation for every K

So if x1, . . . , xq are distinct then

Fn = EK ⇒ Fn(x1), . . . , Fn(xq) distinct
Fn random⇒ Fn(x1), . . . , Fn(xq) not necessarily distinct

This leads to the following attack:

adversary A
Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0
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Analysis

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher

Game RealE
procedure Initialize
K $← Keys
procedure Fn(x)
return EK (x)

adversary A
Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Then
Pr

[
RealAE ⇒ 1

]
=

1

because y1, . . . , yq will be distinct because EK is a permutation.
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Analysis

Let E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher

Game Rand{0,1}ℓ

procedure Fn(x)
if T[x ] = ⊥ then T[x ] $←{0, 1}ℓ
Return T[x ]

adversary A
Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Then
Pr

[
RandA

{0,1}ℓ ⇒ 1
]

= Pr [y1, . . . , yq all distinct] = 1− C(2ℓ, q)

because y1, . . . , yq are randomly chosen from {0, 1}ℓ.
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Birthday attack on a block cipher
E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ a block cipher

adversary A
Let x1, . . . , xq ∈ {0, 1}ℓ be distinct
for i = 1, . . . , q do yi ← Fn(xi)
if y1, . . . , yq are all distinct
then return 1 else return 0

Advprf
E (A) =

1︷ ︸︸ ︷
Pr

[
RealAE ⇒ 1

]
−

1−C(2ℓ,q)︷ ︸︸ ︷
Pr

[
RandA

{0,1}ℓ ⇒ 1
]

= C(2ℓ, q) ≥ 0.3 · q(q − 1)
2ℓ

so
q ≈ 2ℓ/2 ⇒ Advprf

E (A) ≈ 1 .

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Pseudo-random functions 49/54



Birthday attack on a block cipher

Conclusion: If E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ is a block cipher, there is an
attack on it as a PRF that succeeds in about 2ℓ/2 queries.

Depends on block length, not key length!

ℓ 2ℓ/2 Status
DES, 2DES, 3DES3 64 232 Insecure
AES 128 264 Secure
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KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

(T)KR-security: It should be hard to find the target key, or a key
consistent with input-output examples of a hidden target key.
PRF-security: It should be hard to distinguish the input-output
behavior of EK from that of a random function.

How are they related?
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An example of a reduction

Proposition (which we won’t prove)
Let E : {0, 1}k × {0, 1}n → {0, 1}ℓ be a family of functions.
Given any kr-adversary B making q (distinct!) oracle queries, we can
construct a PRF adversary A making q oracle queries such that

Advkr
E (B) ≤ Advprf

E (A) + 2k−qℓ .

The running time of A is that of B plus O(qℓ).

Interpretation:

E is PRF secure ⇒ Advprf
E (A) is small for any A (definition)

⇒ Advkr
E (B) is small (by the proposition above)

⇒ E is KR-secure.

Example: If E = AES and q = 2 then 2k−qℓ = 2−128.

This is called a proof by reduction.
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Consequence of the reduction

The proposition proves that PRF security of E implies

KR (and hence TKR) security of E .
PRF security also implies many other security attributes of E

This is a validation of the choice of PRF security as our main metric.
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Block Cipher Security Assumptions

DES, AES are good block ciphers in the sense that they are PRF-secure up
to the inherent limitations of the birthday attack and known key-recovery
attacks. (And for DES, these inherent limitations imply that DES is
obsolete.)

You can assume this in designs and analyses.

But beware that the future may prove these assumptions wrong!
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