CSE107: Intro to Modern Cryptography

https://cseweb.ucsd.edu/classes/sp22/cse107-a/

Emmanuel Thomé

April 5, 2022

UCSD CSE107: Intro to Modern Cryptography

Lecture 3

Block ciphers and Key-recovery security

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Definition: perfect security

Let $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme. We say that $S\mathcal{E}$ is perfectly secure if for any two messages $M_1, M_2 \in \mathsf{Plaintexts}$ and any C

$$\Pr \left[\mathcal{E}_{\mathcal{K}}(M_1) = C \right] = \Pr \left[\mathcal{E}_{\mathcal{K}}(M_2) = C \right].$$

In both cases, the probability is over the random choice $K \stackrel{\$}{\leftarrow} \mathcal{K}$ and over the coins tossed by \mathcal{E} if any.

Intuitively: Given C, and even knowing the message is either M_1 or M_2 the adversary cannot determine which.

Recall that One-Time-Pad encrypts M to $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$.

Suppose adversary gets ciphertext C = 101 and knows the plaintext M is either $M_1 = 010$ or $M_2 = 001$. Can it tell which?

No, because $C = K \oplus M$ so

- *M* = 010 iff *K* = 111
- M = 001 iff K = 100

but K is equally likely to be 111 or 100 and adversary does not know K.

Claim: OTP is perfectly secure

Let SE = (K, E, D) be the OTP scheme with key-length $m \ge 1$. Then SE is perfectly secure.

Want to show that for any M_1, M_2, C

$$\Pr\left[\mathcal{E}_{\mathcal{K}}(M_1)=C\right]=\Pr\left[\mathcal{E}_{\mathcal{K}}(M_2)=C\right]$$

That is

$$\Pr\left[K \oplus M_1 = C\right] = \Pr\left[K \oplus M_2 = C\right]$$

when $K \leftarrow \{0, 1\}^m$.

The entry in row K, column M of the table is $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$.

• $\Pr[\mathcal{E}_{\mathcal{K}}(00) = 01] =$

The entry in row K, column M of the table is $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$.

•
$$\Pr[\mathcal{E}_{\mathcal{K}}(00) = 01] = \frac{1}{4}$$

• $\Pr[\mathcal{E}_{\mathcal{K}}(10) = 01] =$

The entry in row K, column M of the table is $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$.

•
$$\Pr[\mathcal{E}_{\mathcal{K}}(00) = 01] = \frac{1}{4}$$

• $\Pr[\mathcal{E}_{\mathcal{K}}(10) = 01] = \frac{1}{4}$

Probability for M_1

$$\Pr[\mathcal{E}_{\mathcal{K}}(M_1) = C] = \Pr[\mathcal{K} \oplus M_1 = C]$$

Probability for M_1

$$\Pr[\mathcal{E}_{\mathcal{K}}(M_{1}) = C] = \Pr[\mathcal{K} \oplus M_{1} = C]$$
$$= \frac{|\{ \mathcal{K} \in \{0, 1\}^{m} : \mathcal{K} \oplus M_{1} = C \}|}{|\{0, 1\}^{m}|}$$

Probability for M_1

$$\Pr \left[\mathcal{E}_{K}(M_{1}) = C \right] = \Pr \left[K \oplus M_{1} = C \right]$$
$$= \frac{\left| \{ K \in \{0, 1\}^{m} : K \oplus M_{1} = C \} \right|}{\left| \{0, 1\}^{m} \right|}$$
$$= \frac{1}{2^{m}}.$$

Same for M_2

$$\Pr \left[\mathcal{E}_{K}(M_{2}) = C \right] = \Pr \left[K \oplus M_{2} = C \right]$$
$$= \frac{\left| \left\{ K \in \{0, 1\}^{m} : K \oplus M_{2} = C \right\} \right|}{\left| \{0, 1\}^{m} \right|}$$
$$= \frac{1}{2^{m}}.$$

In fact, OTP is the only encryption scheme that achieves Shannon's perfect security.

Very good privacy Key needs to be as long as message

We want schemes to securely encrypt

- arbitrary amounts of data
- with a single, short (e.g., 128 bit) key

This will be possible once we relax our goal from perfect to computational security.

Plan:

- Study the primitives we will use, namely block ciphers
- Understand and define computational security of block ciphers and encryption schemes
- Use (computationally secure) block ciphers to build (computationally secure) encryption schemes

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

 $\{0,1\}^n$ is the set of *n*-bit strings and $\{0,1\}^*$ is the set of all strings of finite length. By ε we denote the empty string.

If S is a set then |S| denotes its size. Example: $|\{0,1\}^2| = 4$.

If x is a string then |x| denotes its length. Example: |0100| = 4.

If $m \geq 1$ is an integer then let $\mathbb{Z}_m = \{0, 1, \dots, m-1\}.$

By $x \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} S$ we denote picking an element at random from set S and assigning it to x. Thus

$$\Pr[x = s] = 1/|S|$$
 for every $s \in S$.

Functions

Let $n \ge 1$ be an integer. Let X_1, \ldots, X_n and Y be (non-empty) sets.

By $f: X_1 \times \cdots \times X_n \to Y$ we denote that f is a function that

- Takes inputs x_1, \ldots, x_n , where $x_i \in X_i$ for $1 \le i \le n$
- and returns an output $y = f(x_1, \ldots, x_n) \in Y$.

We call *n* the number of inputs (or arguments) of *f*. We call $X_1 \times \cdots \times X_n$ the domain of *f* and *Y* the range of *f*.

Long notation:

$$f: \begin{cases} X_1 \times \cdots \times X_n & \to & Y \\ (x_1, \dots, x_n) & \mapsto & \text{some expression} \end{cases}$$

is a way to denote a function with domain $X_1 \times \cdots \times X_n$ and range Y, together with the mathematical expression that computes it.

Example

Example: Define $f : \mathbb{Z}_3 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ by $f(x_1, x_2) = (x_1 + x_2) \mod 3$. We can also write:

$$f: \left\{ \begin{array}{rrr} \mathbb{Z}_3 \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (x_1, x_2) & \mapsto & (x_1 + x_2) \bmod 3 \end{array} \right.$$

f is a function with n = 2 inputs, domain $\mathbb{Z}_3 \times \mathbb{Z}_3$ and range \mathbb{Z}_3 .

Definition: permutation

Suppose $f: X \to Y$ is a function with one argument. We say that it is a *permutation* if

- X = Y, meaning its domain and range are the same set.
- There is an *inverse* function $f^{-1}: Y \to X$ such that $f^{-1}(f(x)) = x$ for all $x \in X$.

This means f must be one-to-one and onto: for every $y \in Y$ there is a unique $x \in X$ such that f(x) = y.

Consider the following two functions $f: \{0,1\}^2 \rightarrow \{0,1\}^2$, where $X = Y = \{0,1\}^2$:

X	00	01	10	11
f(x)	01	11	00	10

A permutation

x	00	01	10	11
f(x)	01	11	11	10

Not a permutation

Consider the following two functions $f: \{0,1\}^2 \rightarrow \{0,1\}^2$, where $X = Y = \{0,1\}^2$:

X	00	01	10	11
f(x)	01	11	00	10

A permutation

x	00	01	10	11
f(x)	01	11	11	10

Not a permutation

$f^{-1}(x)$ 10 00 11 01	x	00	01	10	11
	$f^{-1}(x)$	10	00	11	01

Its inverse

Consider the following two functions $f: \{0,1\}^2 \rightarrow \{0,1\}^2$, where $X = Y = \{0,1\}^2$:

X	00	01	10	11
f(x)	01	11	00	10

A permutation

x	00	01	10	11
f(x)	01	11	11	10

Not a permutation

x 00 01 10 11									
$f^{-1}(x)$	10	00	11	01					
· · ·									

Its inverse

No inverse, of course!

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Function families

Definition: family of functions

A family of functions (also called a function family) is a two-input function

 $F: \mathsf{Keys} \times \mathsf{D} \to \mathsf{R}.$

Notation: For $K \in \text{Keys}$ we let

$$egin{array}{cccc} {\sf F}_{{\sf K}}: \left\{ egin{array}{cccc} {\sf D} & o & {\sf R} \ x & \mapsto & {\sf F}({\sf K},x) \end{array}
ight.$$

In other words, $F_{\mathcal{K}}(x) = F(\mathcal{K}, x)$ for any $x \in \mathsf{D}$.

- The set Keys is called the key space. If Keys = {0,1}^k we call k the key length.
 The set D is called the input space.
 - If $D = \{0, 1\}^{\ell}$ we call ℓ the input length.
- The set R is called the output space, or range. If $R = \{0, 1\}^{L}$ we call L the output length. UCSD CSELTO: Intro to Modern Cryptography: Block ciphers and Key-recovery security

Example: Define $F : \mathbb{Z}_3 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ by $F(K, x) = (K \cdot x) \mod 3$.

- This is a family of functions with domain $\mathbb{Z}_3 \times \mathbb{Z}_3$ and range \mathbb{Z}_3 .
- If K = 1 then $F_1 : \mathbb{Z}_3 \to \mathbb{Z}_3$ is given by $F_K(x) = x \mod 3$.

Definition: block cipher

Let E: Keys \times D \rightarrow R be a family of functions. We say that E is a block cipher if

 ${\ensuremath{\, \bullet }}\xspace$ R = D, meaning the input and output spaces are the same set.

E_K: D → D is a permutation for every key K ∈ Keys, meaning has an inverse E_K⁻¹: D → D such that E_K⁻¹(E_K(x)) = x for all x ∈ D.
 We let E⁻¹: Keys × D → D, defined by E⁻¹(K, y) = E_K⁻¹(y), be the inverse block cipher to E.

In practice we want that E, E^{-1} are efficiently computable.

If Keys =
$$\{0,1\}^k$$
 then k is the key length as before.
If $R = D = \{0,1\}^\ell$ we call ℓ the block length.

Block cipher E: $\{0,1\}^2 \times \{0,1\}^2 \rightarrow \{0,1\}^2$ (left), where the table entry corresponding to the key in row K and input in column x is $E_K(x)$. Its inverse E^{-1} : $\{0,1\}^2 \times \{0,1\}^2 \rightarrow \{0,1\}^2$ (right).

		00	01	10	11		00	01	10	11
	00	11	00	10	01	00	01	11	10	00
	01	11	10	01	00	01	11	10	01	00
Keys:	10	10	11	00	01	10	10	11	00	01
-	11	11	00	10	01	11	01	11	10	00

- Row 01 of E equals Row 01 of E^{-1} , meaning $E_{01} = E_{01}^{-1}$
- Rows have no repeated entries, for both E and E^{-1}
- Column 00 of *E* has repeated entries, that's ok
- Rows 00 and 11 of E are the same, that's ok

Let $\ell = k$ and define $E \colon \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ by

 $E_{K}(x) = E(K, x) = K \oplus x$

Then E_K has inverse E_K^{-1} where

 $E_K^{-1}(y)=K\oplus y$

Why? Because

$$E_{K}^{-1}(E_{K}(x)) = E_{K}^{-1}(K \oplus x) = K \oplus K \oplus x = x$$

The inverse of block cipher *E* is the block cipher E^{-1} defined by

$$E^{-1}(K,y) = E_K^{-1}(y) = K \oplus y$$

Let E: Keys \times D \rightarrow D be a block cipher. Is E a permutation?

- YES
- NO
- QUESTION DOESN'T MAKE SENSE
- WHO CARES?

This is an exercise in correct mathematical language.

Let $E: \text{Keys} \times D \rightarrow D$ be a block cipher. Is E a permutation?

How to answer this:

- Look back at the definition of a block cipher.
- Look back at the definition of a permutation.
- Pattern match these.
- Now come to a conclusion.

Above we had given the following example of a family of functions:

$$F: \left\{ \begin{array}{rrr} \mathbb{Z}_3 \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (K,x) & \mapsto & (K \cdot x) \bmod 3. \end{array} \right.$$

Question: Is *F* a block cipher? Why or why not?

Above we had given the following example of a family of functions:

$$F: \left\{ \begin{array}{rrr} \mathbb{Z}_3 \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (K, x) & \mapsto & (K \cdot x) \bmod 3. \end{array} \right.$$

Question: Is *F* a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Above we had given the following example of a family of functions:

$$F: \left\{ \begin{array}{rrr} \mathbb{Z}_3 \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (K,x) & \mapsto & (K \cdot x) \bmod 3. \end{array} \right.$$

Question: Is *F* a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Question: Is F_1 a permutation?

Above we had given the following example of a family of functions:

$$F: \left\{ \begin{array}{rrr} \mathbb{Z}_3 \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (K,x) & \mapsto & (K \cdot x) \bmod 3. \end{array} \right.$$

Question: Is *F* a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Question: Is F_1 a permutation?

Answer: Yes. But that alone does not make *F* a block cipher.

We now look at the very similar family of functions:

$$F: \left\{ \begin{array}{rrr} \{1,2\} \times \mathbb{Z}_3 & \to & \mathbb{Z}_3 \\ (K,x) & \mapsto & (K \cdot x) \bmod 3. \end{array} \right.$$

The set of Keys is just Keys = $\{1, 2\}$.

• The function F_1 is a

We now look at the very similar family of functions:

$${\mathcal F}: \left\{ egin{array}{cccc} \{1,2\} imes {\mathbb Z}_3 & o & {\mathbb Z}_3 \ ({\mathcal K},x) & \mapsto & ({\mathcal K}\cdot x) ext{ mod } 3. \end{array}
ight.$$

The set of Keys is just Keys = $\{1, 2\}$.

- The function F_1 is a permutation.
- The function F_2 is a

We now look at the very similar family of functions:

$${\mathcal F}: \left\{ egin{array}{cccc} \{1,2\} imes {\mathbb Z}_3 & o & {\mathbb Z}_3 \ ({\mathcal K},x) & \mapsto & ({\mathcal K}\cdot x) ext{ mod } 3. \end{array}
ight.$$

The set of Keys is just Keys = $\{1, 2\}$.

- The function F_1 is a permutation.
- The function F_2 is a permutation.

Therefore *F* defines a block cipher.

(a very simplistic one!)

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Block cipher usage

Let $E : \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher. The block cipher E is considered public (Kerckhoffs). In typical usage:

- $K \stackrel{s}{\leftarrow} \{0,1\}^k$ is known to parties S (sender) and R (receiver), but the key K is not given to adversary A.
- S uses E_K for encryption , R uses E_K^{-1} for decryption

Leads to security requirements like: • Hard to get K from $y_1, y_2, ...;$ • Hard to get x_i from $y_i; ...$

- 1972 NBS (now NIST) asked for a block cipher for standardization
- 1974 IBM designs Lucifer
- Lucifer eventually evolved into DES.
- Widely adopted as a standard including by ANSI and American Bankers association
- Used in ATM machines
- Replaced (by AES) in 2001.

Key Length k = 56

Block length $\ell = 64$

So,

$$\begin{split} \mathsf{DES} \colon \{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64} \\ \mathsf{DES}^{-1} \colon \{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64} \end{split}$$

DES is a block cipher: for any $k \in \text{Keys} = \{0, 1\}^{56}$, the function DES_k is a permutation.

Several important concepts are present in the construction of DES:

- DES is a Feistel network, made of several successive rounds.
- Each round performs a simple operation.
- Something that is derived from the key is used at each round, via a Key schedule algorithm.
- Most of the structure resembles a linear function, but nonlinearity is inserted at very important places.
- Non-linearity is done by small table lookups called S-boxes.

Nowadays, DES is obsolete, but its design concepts are still relevant today.

- L_0, R_0 are bitstrings of equal length: 32 bits.
- F is some nonlinear function. F does not have to be a permutation.
- We have constructed a function

$$\mathcal{R}_{F}: \left\{ \begin{array}{rrr} \{0,1\}^{64} & \to & \{0,1\}^{64} \\ (L_{0},R_{0}) & \mapsto & (R_{0},L_{0}\oplus F(R_{0})) \end{array} \right.$$

We can invert one round quite easily

Because of this simple fact, one round \mathcal{R}_F is a permutation, whatever the function F. We use it to create a block cipher.

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Key-recovery security

- One round is a pretty simple permutation, but chaining them one after another makes the resulting permutation a lot more complicated.
- In DES, as many as 16 rounds are chained to form a block cipher.

DES Construction

function
$$DES_K(M)$$
 // $|K| = 56$ and $|M| = 64$
 $(K_1, \ldots, K_{16}) \leftarrow KeySchedule(K)$ // $|K_i| = 48$ for $1 \le i \le 16$
 $M \leftarrow IP(M)$ // initial permutation
Parse M as $L_0 \parallel R_0$ // $|L_0| = |R_0| = 32$
for $i = 1$ to 16 do
 $L_i \leftarrow R_{i-1}$; $R_i \leftarrow F(K_i, R_{i-1}) \oplus L_{i-1}$
 $C \leftarrow IP^{-1}(L_{16} \parallel R_{16})$
return C

function
$$\mathsf{DES}_{K}^{-1}(C)$$
 // $|\mathcal{K}| = 56$ and $|\mathcal{M}| = 64$
 $(\mathcal{K}_{1}, \ldots, \mathcal{K}_{16}) \leftarrow \mathcal{KeySchedule}(\mathcal{K})$ // $|\mathcal{K}_{i}| = 48$ for $1 \le i \le 16$
 $C \leftarrow IP(C)$
Parse C as $L_{16} \parallel R_{16}$
for $i = 16$ downto 1 do
 $R_{i-1} \leftarrow L_{i}$; $L_{i-1} \leftarrow F(\mathcal{K}_{i}, L_{i}) \oplus R_{i}$
 $\mathcal{M} \leftarrow IP^{-1}(L_{0} \parallel R_{0})$
return \mathcal{M}

UCSD CSE107: Intro to Modern Cryptography; Block ciphers and Key-recovery security

DES Construction

function
$$DES_{K}(M)$$
 // $|K| = 56$ and $|M| = 64$
 $(K_{1}, ..., K_{16}) \leftarrow KeySchedule(K)$ // $|K_{i}| = 48$ for $1 \le i \le 16$
 $M \leftarrow IP(M)$
Parse M as $L_{0} || R_{0}$ // $|L_{0}| = |R_{0}| = 32$
for $i = 1$ to 16 do
 $L_{i} \leftarrow R_{i-1}$; $R_{i} \leftarrow f(K_{i}, R_{i-1}) \oplus L_{i-1}$
 $C \leftarrow IP^{-1}(L_{16} || R_{16})$
return C

Initial permutation: given explicitly by a table (see Wikipedia).

DES Construction

function
$$F(J, R)$$
 // $|J| = 48$ and $|R| = 32$
 $R \leftarrow E(R)$; $R \leftarrow R \oplus J$
Parse R as $R_1 \parallel R_2 \parallel R_3 \parallel R_4 \parallel R_5 \parallel R_6 \parallel R_7 \parallel R_8$ // $|R_i| = 6$ for $1 \le i \le$
for $i = 1, ..., 8$ do
 $R_i \leftarrow \mathbf{S}_i(R_i)$ // Each S-box returns 4 bits
 $R \leftarrow R_1 \parallel R_2 \parallel R_3 \parallel R_4 \parallel R_5 \parallel R_6 \parallel R_7 \parallel R_8$ // $|R| = 32$ bits
 $R \leftarrow P(R)$; return R

Expansion E and permutation P are given explicitly by tables (see Wikipedia).

All S-boxes are nonlinear function with 6-bit inputs and 4-bit outputs. They are given explicitly by tables (again, see Wikipedia).

- The minimal size of these tables is totally understandable given the implementation constraints of the time. 8 tables with 64 values of 4 bits each means a quarter of a kilobyte, and that was something, in the 1970s!
- How the values in the tables were chosen remained a mystery for many years.

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Let E: Keys \times D \rightarrow R be a block cipher known to the adversary A.

- Sender Alice and receiver Bob share a *target key* $K \in$ Keys.
- Alice encrypts M_i to get $C_i = E_K(M_i)$ for $1 \le i \le q$, and transmits C_1, \ldots, C_q to Bob
- The adversary gets C_1,\ldots,C_q and also knows M_1,\ldots,M_q
- Now the adversary wants to figure out K so that it can decrypt any future ciphertext C to recover $M = E_K^{-1}(C)$.

Question: Why do we assume A knows M_1, \ldots, M_q ?

Answer: Reasons include a posteriori revelation of data, a priori knowledge of context, and just being conservative!

We consider two measures (metrics) for how well the adversary does at this key recovery task:

- Target key recovery (TKR)
- Consistent key recovery (KR)

In each case the definition involves a game and an advantage.

The definitions will allow E to be any family of functions, not just a block cipher.

The definitions allow A to pick, not just know, M_1, \ldots, M_q . This is called a chosen-plaintext attack.

Target Key Recovery: The game

- First **Initialize** executes, selecting *target key* $K \stackrel{\$}{\leftarrow}$ Keys, but not giving it to A.
- Now *A* can call (query) **Fn** on any input *M* ∈ D of its choice to get back $C = E_K(M)$. It can make as many queries as it wants.

queries
$$M_1, \ldots, M_q \rightarrow \text{answers } C_1, \ldots, C_q$$
.

- Eventually A will halt with an output K' which is automatically viewed as the input to **Finalize**
- The game returns whatever Finalize returns

Common notations

Notations: games

- TKR is a game. It includes some randomness.
- It is parameterized by something. Here, it is a block cipher. We speak of the game TKR_E, the parameter
- Some player (program) A will play the game. The game can return
 True or False. Whether A succeeds or not is TKR^A_E.

Notation: advantages

We define some advantages, that are related to some games:

- Adv is our generic notation for an advantage.
 Adv^{tkr}, for example is related to the game TKR.
- Adv_E^{tkr} is related to the game TKR_E , parameterized by E.
- $Adv_E^{tkr}(A)$ is related to how well A performs when playing TKR_E .

Definition of $\boldsymbol{\mathsf{Adv}}^{tkr}$

Definition of Adv^{tkr}

 Adv^{tkr} is defined from the game TKR:

$$\mathsf{Adv}_E^{\mathrm{tkr}}(A) = \Pr[\mathrm{TKR}_E^A \Rightarrow \mathrm{true}].$$

The tkr advantage of A is the probability that the game TKR returns true

Consistent keys

Definition: consistent keys

Let E: Keys \times D \rightarrow R be a family of functions. We say that key $K' \in$ Keys is *consistent* with $(M_1, C_1), \ldots, (M_q, C_q)$ if $E(K', M_i) = C_i$ for all $1 \le i \le q$.

Example: For E: $\{0,1\}^2 \times \{0,1\}^2 \rightarrow \{0,1\}^2$ defined by

	00	01	10	11
00	11	00	10	01
01	11	10	01	00
10	10	11	00	01
11	11	00	10	01

The entry in row K, column M is E(K, M).

- Key 00 is consistent with (11,01)
- Key 10 is consistent with (11,01)
- Key 00 is consistent with (01,00), (11,01)
- Key 11 is consistent with (01,00), (11,01)

Consistent Key Recovery: Game and Advantage

Let E: Keys \times D \rightarrow R be a family of functions, and A an adversary.

The game returns true if (1) The key K' returned by the adversary is consistent with $(M_1, C_1), \ldots, (M_q, C_q)$, and (2) M_1, \ldots, M_q are distinct.

A is a q-query adversary if it makes q distinct queries to its **Fn** oracle.

Definition of $\boldsymbol{\mathsf{Adv}}^{\mathrm{kr}}$

$$\operatorname{Adv}_{E}^{\operatorname{kr}}(A) = \Pr[\operatorname{KR}_{E}^{A} \Rightarrow \operatorname{true}].$$

Fact: Suppose that, in game KR_E , adversary A makes queries M_1, \ldots, M_q to **Fn**, thereby defining C_1, \ldots, C_q . Then the target key K is consistent with $(M_1, C_1), \ldots, (M_q, C_q)$.

Proposition: Let E be a family of functions. Let A be *any* adversary all of whose **Fn** queries are distinct. Then

 $\mathsf{Adv}_E^{\mathrm{kr}}(A) \ge \mathsf{Adv}_E^{\mathrm{tkr}}(A)$.

Why? If the K' that A returns equals the target key K, then, by the Fact, the input-output examples $(M_1, C_1), \ldots, (M_q, C_q)$ will of course be consistent with K'.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

Doing more queries in	the tkr (target key recover	ry) game makes it:
□ Easier.	\Box Harder.	□ It depends.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

