CSE107: Intro to Modern Cryptography

 https://cseweb.ucsd.edu/classes/sp22/cse107-a/Emmanuel Thomé

April 5, 2022

Lecture 3

Block ciphers and Key-recovery security

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Plan

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Recall from last lecture: Perfect security

Definition: perfect security

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme. We say that $\mathcal{S E}$ is perfectly secure if for any two messages $M_{1}, M_{2} \in$ Plaintexts and any C

$$
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{1}\right)=C\right]=\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{2}\right)=C\right] .
$$

In both cases, the probability is over the random choice $K \stackrel{\leftrightarrow}{\leftarrow} \mathcal{K}$ and over the coins tossed by \mathcal{E} if any.

Intuitively: Given C, and even knowing the message is either M_{1} or M_{2} the adversary cannot determine which.

Intuition for One-Time-Pad (OTP) security

Recall that One-Time-Pad encrypts M to $\mathcal{E}_{K}(M)=K \oplus M$.
Suppose adversary gets ciphertext $C=101$ and knows the plaintext M is either $M_{1}=010$ or $M_{2}=001$. Can it tell which?

No, because $C=K \oplus M$ so

- $M=010$ iff $K=111$
- $M=001$ iff $K=100$
but K is equally likely to be 111 or 100 and adversary does not know K.

Perfect security of OTP

Claim: OTP is perfectly secure

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the OTP scheme with key-length $m \geq 1$. Then $\mathcal{S E}$ is perfectly secure.

Want to show that for any M_{1}, M_{2}, C

$$
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{1}\right)=C\right]=\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{2}\right)=C\right]
$$

That is

$$
\operatorname{Pr}\left[K \oplus M_{1}=C\right]=\operatorname{Pr}\left[K \oplus M_{2}=C\right]
$$

when $K \leftarrow^{\S}\{0,1\}^{m}$.

Example: $m=2$

The entry in row K, column M of the table is $\mathcal{E}_{K}(M)=K \oplus M$.

- $\operatorname{Pr}\left[\mathcal{E}_{K}(00)=01\right]=$

Example: $m=2$

The entry in row K, column M of the table is $\mathcal{E}_{K}(M)=K \oplus M$.

- $\operatorname{Pr}\left[\mathcal{E}_{K}(00)=01\right]=\frac{1}{4}$
- $\operatorname{Pr}\left[\mathcal{E}_{K}(10)=01\right]=$

Example: $m=2$

The entry in row K, column M of the table is $\mathcal{E}_{K}(M)=K \oplus M$.

- $\operatorname{Pr}\left[\mathcal{E}_{K}(00)=01\right]=\frac{1}{4}$
- $\operatorname{Pr}\left[\mathcal{E}_{K}(10)=01\right]=\frac{1}{4}$

Proof of claim

Probability for M_{1}

$$
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{1}\right)=C\right]=\operatorname{Pr}\left[K \oplus M_{1}=C\right]
$$

Proof of claim

Probability for M_{1}

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{1}\right)=C\right] & =\operatorname{Pr}\left[K \oplus M_{1}=C\right] \\
& =\frac{\left|\left\{K \in\{0,1\}^{m}: K \oplus M_{1}=C\right\}\right|}{\left|\{0,1\}^{m}\right|}
\end{aligned}
$$

Proof of claim

Probability for M_{1}

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{1}\right)=C\right] & =\operatorname{Pr}\left[K \oplus M_{1}=C\right] \\
& =\frac{\left|\left\{K \in\{0,1\}^{m}: K \oplus M_{1}=C\right\}\right|}{\left|\{0,1\}^{m}\right|} \\
& =\frac{1}{2^{m}} .
\end{aligned}
$$

Proof of claim

Same for M_{2}

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{K}\left(M_{2}\right)=C\right] & =\operatorname{Pr}\left[K \oplus M_{2}=C\right] \\
& =\frac{\left|\left\{K \in\{0,1\}^{m}: K \oplus M_{2}=C\right\}\right|}{\left|\{0,1\}^{m}\right|} \\
& =\frac{1}{2^{m}} .
\end{aligned}
$$

In fact, OTP is the only encryption scheme that achieves Shannon's perfect security.

Perfect security: Plusses and Minuses

What next

We want schemes to securely encrypt

- arbitrary amounts of data
- with a single, short (e.g., 128 bit) key

This will be possible once we relax our goal from perfect to computational security.

Plan:

- Study the primitives we will use, namely block ciphers
- Understand and define computational security of block ciphers and encryption schemes
- Use (computationally secure) block ciphers to build (computationally secure) encryption schemes

Plan

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Notation

$\{0,1\}^{n}$ is the set of n-bit strings and $\{0,1\}^{*}$ is the set of all strings of finite length. By ε we denote the empty string.

If S is a set then $|S|$ denotes its size. Example: $\left|\{0,1\}^{2}\right|=4$.
If x is a string then $|x|$ denotes its length. Example: $|0100|=4$.
If $m \geq 1$ is an integer then let $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$.
By $x{ }_{\leftarrow}{ }^{\ddagger} S$ we denote picking an element at random from set S and assigning it to x. Thus

$$
\operatorname{Pr}[x=s]=1 /|S| \text { for every } s \in S
$$

Functions

Let $n \geq 1$ be an integer. Let X_{1}, \ldots, X_{n} and Y be (non-empty) sets.
By $f: X_{1} \times \cdots \times X_{n} \rightarrow Y$ we denote that f is a function that

- Takes inputs x_{1}, \ldots, x_{n}, where $x_{i} \in X_{i}$ for $1 \leq i \leq n$
- and returns an output $y=f\left(x_{1}, \ldots, x_{n}\right) \in Y$.

We call n the number of inputs (or arguments) of f. We call $X_{1} \times \cdots \times X_{n}$ the domain of f and Y the range of f.

Long notation:

$$
f:\left\{\begin{aligned}
X_{1} \times \cdots \times X_{n} & \rightarrow Y \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto
\end{aligned}\right. \text { some expression }
$$

is a way to denote a function with domain $X_{1} \times \cdots \times X_{n}$ and range Y, together with the mathematical expression that computes it.

Example

Example: Define $f: \mathbb{Z}_{3} \times \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ by $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 3$. We can also write:

$$
f:\left\{\begin{aligned}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
\left(x_{1}, x_{2}\right) & \mapsto\left(x_{1}+x_{2}\right) \bmod 3
\end{aligned}\right.
$$

f is a function with $n=2$ inputs, domain $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and range \mathbb{Z}_{3}.

Permutations

Definition: permutation

Suppose $f: X \rightarrow Y$ is a function with one argument. We say that it is a permutation if

- $X=Y$, meaning its domain and range are the same set.
- There is an inverse function $f^{-1}: Y \rightarrow X$ such that $f^{-1}(f(x))=x$ for all $x \in X$.

This means f must be one-to-one and onto: for every $y \in Y$ there is a unique $x \in X$ such that $f(x)=y$.

Permutations versus functions example

Consider the following two functions $f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$, where $X=Y=\{0,1\}^{2}$:

x	00	01	10	11
$f(x)$	01	11	00	10
A permutation				

x	00	01	10	11	
$f(x)$	01	11	11	10	
Not a permutation					

Permutations versus functions example

Consider the following two functions $f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$, where $X=Y=\{0,1\}^{2}$:

x	00	01	10	11	
$f(x)$	01	11	00	10	
A permutation					

x	00	01	10	11
$f(x)$	01	11	11	10

Not a permutation

x	00	01	10	11
$f^{-1}(x)$	10	00	11	01

Its inverse

Permutations versus functions example

Consider the following two functions $f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$, where $X=Y=\{0,1\}^{2}$:

x	00	01	10	11
$f(x)$	01	11	00	10
A permutation				

x	00	01	10	11
$f(x)$	01	11	11	10

Not a permutation

No inverse, of course!

Plan

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Function families

Definition: family of functions

A family of functions (also called a function family) is a two-input function

$$
F: \text { Keys } \times \mathrm{D} \rightarrow \mathrm{R}
$$

Notation: For $K \in$ Keys we let

$$
F_{K}:\left\{\begin{array}{rll}
\mathrm{D} & \rightarrow & \mathrm{R} \\
x & \mapsto & F(K, x)
\end{array}\right.
$$

In other words, $F_{K}(x)=F(K, x)$ for any $x \in \mathrm{D}$.

- The set Keys is called the key space. If Keys $=\{0,1\}^{k}$ we call k the key length.
- The set D is called the input space. If $D=\{0,1\}^{\ell}$ we call ℓ the input length.
- The set R is called the output space, or range.

Example of a function family

Example: Define $F: \mathbb{Z}_{3} \times \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ by $F(K, x)=(K \cdot x) \bmod 3$.

- This is a family of functions with domain $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and range \mathbb{Z}_{3}.
- If $K=1$ then $F_{1}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ is given by $F_{K}(x)=x \bmod 3$.

Block ciphers: Definition

Definition: block cipher

Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions.
We say that E is a block cipher if

- $R=D$, meaning the input and output spaces are the same set.
- $E_{K}: \mathrm{D} \rightarrow \mathrm{D}$ is a permutation for every key $K \in$ Keys, meaning has an inverse $E_{K}^{-1}: \mathrm{D} \rightarrow \mathrm{D}$ such that $E_{K}^{-1}\left(E_{K}(x)\right)=x$ for all $x \in \mathrm{D}$.
We let E^{-1} : Keys $\times \mathrm{D} \rightarrow \mathrm{D}$, defined by $E^{-1}(K, y)=E_{K}^{-1}(y)$, be the inverse block cipher to E.

In practice we want that E, E^{-1} are efficiently computable.
If Keys $=\{0,1\}^{k}$ then k is the key length as before.
If $\mathrm{R}=\mathrm{D}=\{0,1\}^{\ell}$ we call ℓ the block length.

Block ciphers: Example

Block cipher $E:\{0,1\}^{2} \times\{0,1\}^{2} \rightarrow\{0,1\}^{2}$ (left), where the table entry corresponding to the key in row K and input in column x is $E_{K}(x)$. Its inverse $E^{-1}:\{0,1\}^{2} \times\{0,1\}^{2} \rightarrow\{0,1\}^{2}$ (right).

Keys: | | 00 | 01 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 11 | 00 | 10 | 01 |
| 01 | 11 | 10 | 01 | 00 |
| 10 | 10 | 11 | 00 | 01 |
| 11 | 11 | 00 | 10 | 01 |

	00	01	10	11
00	01	11	10	00
01	11	10	01	00
10	10	11	00	01
11	01	11	10	00

- Row 01 of E equals Row 01 of E^{-1}, meaning $E_{01}=E_{01}^{-1}$
- Rows have no repeated entries, for both E and E^{-1}
- Column 00 of E has repeated entries, that's ok
- Rows 00 and 11 of E are the same, that's ok

Block Ciphers: Example

Let $\ell=k$ and define $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ by

$$
E_{K}(x)=E(K, x)=K \oplus x
$$

Then E_{K} has inverse E_{K}^{-1} where

$$
E_{K}^{-1}(y)=K \oplus y
$$

Why? Because

$$
E_{K}^{-1}\left(E_{K}(x)\right)=E_{K}^{-1}(K \oplus x)=K \oplus K \oplus x=x
$$

The inverse of block cipher E is the block cipher E^{-1} defined by

$$
E^{-1}(K, y)=E_{K}^{-1}(y)=K \oplus y
$$

Exercise

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{D}$ be a block cipher. Is E a permutation?

- YES
- NO
- QUESTION DOESN'T MAKE SENSE
- WHO CARES?

This is an exercise in correct mathematical language.

Exercise

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{D}$ be a block cipher. Is E a permutation?

How to answer this:

- Look back at the definition of a block cipher.
- Look back at the definition of a permutation.
- Pattern match these.
- Now come to a conclusion.

Exercise

Above we had given the following example of a family of functions:

$$
F:\left\{\begin{array}{rll}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto & (K \cdot x) \bmod 3
\end{array}\right.
$$

Question: Is F a block cipher? Why or why not?

Exercise

Above we had given the following example of a family of functions:

$$
F:\left\{\begin{array}{rll}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto & (K \cdot x) \bmod 3
\end{array}\right.
$$

Question: Is F a block cipher? Why or why not?
Answer: No, because $F_{0}(1)=F_{0}(2)$ so F_{0} is not a permutation.

Exercise

Above we had given the following example of a family of functions:

$$
F:\left\{\begin{array}{rll}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto(K \cdot x) \bmod 3
\end{array}\right.
$$

Question: Is F a block cipher? Why or why not?
Answer: No, because $F_{0}(1)=F_{0}(2)$ so F_{0} is not a permutation.

Question: Is F_{1} a permutation?

Exercise

Above we had given the following example of a family of functions:

$$
F:\left\{\begin{aligned}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto
\end{aligned}(K \cdot x) \bmod 3\right.
$$

Question: Is F a block cipher? Why or why not?
Answer: No, because $F_{0}(1)=F_{0}(2)$ so F_{0} is not a permutation.

Question: Is F_{1} a permutation?
Answer: Yes. But that alone does not make F a block cipher.

A small modification

We now look at the very similar family of functions:

$$
F:\left\{\begin{aligned}
\{1,2\} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto(K \cdot x) \bmod 3 .
\end{aligned}\right.
$$

The set of Keys is just Keys $=\{1,2\}$.

- The function F_{1} is a

A small modification

We now look at the very similar family of functions:

$$
F:\left\{\begin{aligned}
\{1,2\} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto(K \cdot x) \bmod 3 .
\end{aligned}\right.
$$

The set of Keys is just Keys $=\{1,2\}$.

- The function F_{1} is a permutation.
- The function F_{2} is a

A small modification

We now look at the very similar family of functions:

$$
F:\left\{\begin{aligned}
\{1,2\} \times \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{3} \\
(K, x) & \mapsto(K \cdot x) \bmod 3 .
\end{aligned}\right.
$$

The set of Keys is just Keys $=\{1,2\}$.

- The function F_{1} is a permutation.
- The function F_{2} is a permutation.

Therefore F defines a block cipher.
(a very simplistic one!)

Plan

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Block cipher usage

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher.
The block cipher E is considered public (Kerckhoffs). In typical usage:

- $K \leftarrow^{\S}\{0,1\}^{k}$ is known to parties S (sender) and R (receiver), but the key K is not given to adversary A.
- S uses E_{K} for encryption, R uses E_{K}^{-1} for decryption

Leads to security requirements like: Hard to get K from y_{1}, y_{2}, \ldots;

- Hard to get x_{i} from $y_{i} ; \ldots$

DES History

1972 - NBS (now NIST) asked for a block cipher for standardization 1974 - IBM designs Lucifer

Lucifer eventually evolved into DES.
Widely adopted as a standard including by ANSI and American Bankers association

Used in ATM machines
Replaced (by AES) in 2001.

DES parameters

Key Length $k=56$

Block length $\ell=64$

So,

$$
\begin{aligned}
& \text { DES: }\{0,1\}^{56} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64} \\
& \text { DES }^{-1}:\{0,1\}^{56} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}
\end{aligned}
$$

DES is a block cipher: for any $k \in \operatorname{Keys}=\{0,1\}^{56}$, the function DES_{k} is a permutation.

DES construction

Several important concepts are present in the construction of DES:

- DES is a Feistel network, made of several successive rounds.
- Each round performs a simple operation.
- Something that is derived from the key is used at each round, via a Key schedule algorithm.
- Most of the structure resembles a linear function, but nonlinearity is inserted at very important places.
- Non-linearity is done by small table lookups called S-boxes.

Nowadays, DES is obsolete, but its design concepts are still relevant today.

One round in a Feistel network (in DES)

- L_{0}, R_{0} are bitstrings of equal length: 32 bits.
- F is some nonlinear function. F does not have to be a permutation.
- We have constructed a function

$$
\mathcal{R}_{F}:\left\{\begin{array}{rll}
\{0,1\}^{64} & \rightarrow\{0,1\}^{64} \\
\left(L_{0}, R_{0}\right) & \mapsto & \left(R_{0}, L_{0} \oplus F\left(R_{0}\right)\right)
\end{array}\right.
$$

We can invert one round quite easily

Because of this simple fact, one round \mathcal{R}_{F} is a permutation, whatever the function F. We use it to create a block cipher.

Chaining multiple rounds

- One round is a pretty simple permutation, but chaining them one after another makes the resulting permutation a lot more complicated.
- In DES, as many as 16 rounds are chained to form a block cipher.

DES Construction

function $\operatorname{DES}_{K}(M) \quad / /|K|=56$ and $|M|=64$
$\left(K_{1}, \ldots, K_{16}\right) \leftarrow \operatorname{KeySchedule}(K) \quad / /\left|K_{i}\right|=48$ for $1 \leq i \leq 16$
$M \leftarrow I P(M) \quad / /$ initial permutation
Parse M as $L_{0} \| R_{0} \quad / /\left|L_{0}\right|=\left|R_{0}\right|=32$
for $i=1$ to 16 do

$$
\begin{aligned}
& \quad L_{i} \leftarrow R_{i-1} ; \quad R_{i} \leftarrow F\left(K_{i}, R_{i-1}\right) \oplus L_{i-1} \\
& C \leftarrow I P^{-1}\left(L_{16} \| R_{16}\right)
\end{aligned}
$$

return C
function $\operatorname{DES}_{K}^{-1}(C) \quad / /|K|=56$ and $|M|=64$
$\left(K_{1}, \ldots, K_{16}\right) \leftarrow \operatorname{KeySchedule}(K) \quad / /\left|K_{i}\right|=48$ for $1 \leq i \leq 16$
$C \leftarrow I P(C)$
Parse C as $L_{16} \| R_{16}$
for $i=16$ downto 1 do

$$
R_{i-1} \leftarrow L_{i} ; \quad L_{i-1} \leftarrow F\left(K_{i}, L_{i}\right) \oplus R_{i}
$$

$M \leftarrow I P^{-1}\left(L_{0} \| R_{0}\right)$
return M

DES Construction

$$
\begin{aligned}
& \text { function } \operatorname{DES}_{K}(M) \quad / /|K|=56 \text { and }|M|=64 \\
& \quad\left(K_{1}, \ldots, K_{16}\right) \leftarrow \text { KeySchedule }(K) \quad / /\left|K_{i}\right|=48 \text { for } 1 \leq i \leq 16 \\
& M \leftarrow I P(M) \\
& \text { Parse } M \text { as } L_{0}\left\|R_{0} \quad\right\|\left|L_{0}\right|=\left|R_{0}\right|=32 \\
& \text { for } i=1 \text { to } 16 \text { do } \\
& \quad L_{i} \leftarrow R_{i-1} ; \quad R_{i} \leftarrow f\left(K_{i}, R_{i-1}\right) \oplus L_{i-1} \\
& C \leftarrow I P^{-1}\left(L_{16} \| R_{16}\right) \\
& \text { return } C
\end{aligned}
$$

Initial permutation: given explicitly by a table (see Wikipedia).

IP

$I P^{-1}$

DES Construction

function $F(J, R) \quad / /|J|=48$ and $|R|=32$

$$
R \leftarrow E(R) ; \quad R \leftarrow R \oplus J
$$

Parse R as $R_{1}\left\|R_{2}\right\| R_{3}\left\|R_{4}\right\| R_{5}\left\|R_{6}\right\| R_{7} \| R_{8} \quad / /\left|R_{i}\right|=6$ for $1 \leq i \leq$ for $i=1, \ldots, 8$ do
$R_{i} \leftarrow \mathbf{S}_{i}\left(R_{i}\right) \quad / /$ Each S-box returns 4 bits
$R \leftarrow R_{1}\left\|R_{2}\right\| R_{3}\left\|R_{4}\right\| R_{5}\left\|R_{6}\right\| R_{7} \| R_{8} \quad / /|R|=32$ bits
$R \leftarrow P(R)$; return R
Expansion E and permutation P are given explicitly by tables (see Wikipedia).

E

P

S-boxes

All S-boxes are nonlinear function with 6-bit inputs and 4-bit outputs. They are given explicitly by tables (again, see Wikipedia).

- The minimal size of these tables is totally understandable given the implementation constraints of the time. 8 tables with 64 values of 4 bits each means a quarter of a kilobyte, and that was something, in the 1970s!
- How the values in the tables were chosen remained a mystery for many years.

Plan

Recall from last lecture

Notations, definitions

Definition of a block cipher

The DES block cipher

Two examples of formal attack scenarios

Key Recovery Attack Scenario

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a block cipher known to the adversary A.

- Sender Alice and receiver Bob share a target key $K \in$ Keys.
- Alice encrypts M_{i} to get $C_{i}=E_{K}\left(M_{i}\right)$ for $1 \leq i \leq q$, and transmits C_{1}, \ldots, C_{q} to Bob
- The adversary gets C_{1}, \ldots, C_{q} and also knows M_{1}, \ldots, M_{q}
- Now the adversary wants to figure out K so that it can decrypt any future ciphertext C to recover $M=E_{K}^{-1}(C)$.

Question: Why do we assume A knows M_{1}, \ldots, M_{q} ?
Answer: Reasons include a posteriori revelation of data, a priori knowledge of context, and just being conservative!

Key Recovery Security Metrics

We consider two measures (metrics) for how well the adversary does at this key recovery task:

- Target key recovery (TKR)
- Consistent key recovery (KR)

In each case the definition involves a game and an advantage.
The definitions will allow E to be any family of functions, not just a block cipher.

The definitions allow A to pick, not just know, M_{1}, \ldots, M_{q}. This is called a chosen-plaintext attack.

Target Key Recovery: The game

Game TKR E

procedure Initialize
$K \stackrel{\$}{\leftarrow}$ Keys
procedure $\mathbf{F n}(M)$
Return $E(K, M)$
procedure Finalize $\left(K^{\prime}\right)$
Return $\left(K=K^{\prime}\right)$

- First Initialize executes, selecting target key $K \stackrel{\ddagger}{\leftarrow}$ Keys, but not giving it to A.
- Now A can call (query) Fn on any input $M \in \mathrm{D}$ of its choice to get back $C=E_{K}(M)$. It can make as many queries as it wants.

$$
\text { queries } M_{1}, \ldots, M_{q} \rightarrow \text { answers } C_{1}, \ldots, C_{q} \text {. }
$$

- Eventually A will halt with an output K^{\prime} which is automatically viewed as the input to Finalize
- The game returns whatever Finalize returns

Common notations

Notations: games

- TKR is a game. It includes some randomness.
- It is parameterized by something. Here, it is a block cipher. We speak of the game $\operatorname{TKR}_{E \longleftarrow}$ _ the parameter
- Some player (program) A will play the game. The game can return True or False. Whether A succeeds or not is $\mathrm{TKR}_{E}^{A}{ }^{\leftarrow}$ the adversary

Notation: advantages

We define some advantages, that are related to some games:

- Adv is our generic notation for an advantage.

Adv ${ }^{\mathrm{tkr}}$, for example is related to the game TKR.

- $\mathbf{A d v}_{E}^{\mathrm{tkr}}$ is related to the game TKR_{E}, parameterized by E.
- $\operatorname{Adv}_{E}^{\mathrm{tkr}}(A)$ is related to how well A performs when playing TKR_{E}.

Definition of $\mathbf{A d v}{ }^{\mathrm{tkr}}$

Game TKR_{E}

procedure Initialize
 $K \stackrel{\S}{\leftarrow}$ Keys

procedure $\operatorname{Fn}(M)$
Return $E(K, M)$
procedure Finalize $\left(K^{\prime}\right)$
Return $\left(K=K^{\prime}\right)$

Definition of $\mathbf{A d v}{ }^{\mathrm{tkr}}$

$\mathbf{A d v}^{\mathrm{tkr}}$ is defined from the game TKR:

$$
\operatorname{Adv}_{E}^{\mathrm{tkr}}(A)=\operatorname{Pr}\left[\mathrm{TKR}_{E}^{A} \Rightarrow \text { true }\right] .
$$

The tkr advantage of A is the probability that the game TKR returns true

Consistent keys

Definition: consistent keys

Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions. We say that key $K^{\prime} \in$ Keys is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$ if $E\left(K^{\prime}, M_{i}\right)=C_{i}$ for all $1 \leq i \leq q$.

Example: For $E:\{0,1\}^{2} \times\{0,1\}^{2} \rightarrow\{0,1\}^{2}$ defined by

	00	01	10	11
00	11	00	10	01
01	11	10	01	00
10	10	11	00	01
11	11	00	10	01

The entry in row K, column M is $E(K, M)$.

- Key 00 is consistent with $(11,01)$
- Key 10 is consistent with $(11,01)$
- Key 00 is consistent with $(01,00),(11,01)$
- Key 11 is consistent with $(01,00),(11,01)$

Consistent Key Recovery: Game and Advantage

Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions, and A an adversary.

Game KR

procedure Initialize

$K \stackrel{\S}{\leftarrow}$ Keys
procedure $\mathbf{F n}(M)$
Return $E(K, M)$
procedure Finalize $\left(K^{\prime}\right)$
For $j=1, \ldots, i$ do
If $E\left(K^{\prime}, M_{j}\right) \neq C_{j}$ then Return false
If $M_{j} \in\left\{M_{1}, \ldots, M_{j-1}\right\}$ then Return false Return true

The game returns true if (1) The key K^{\prime} returned by the adversary is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$, and (2) M_{1}, \ldots, M_{q} are distinct.
A is a q-query adversary if it makes q distinct queries to its $\mathbf{F n}$ oracle.

Definition of $\mathbf{A d v}{ }^{k r}$

$$
\operatorname{Adv}_{E}^{\mathrm{kr}}(A)=\operatorname{Pr}\left[\mathrm{KR}_{E}^{A} \Rightarrow \text { true }\right] .
$$

kr advantage always exceeds tkr advantage

Fact: Suppose that, in game KR_{E}, adversary A makes queries M_{1}, \ldots, M_{q} to $\mathbf{F n}$, thereby defining C_{1}, \ldots, C_{q}. Then the target key K is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$.

Proposition: Let E be a family of functions. Let A be any adversary all of whose Fn queries are distinct. Then

$$
\boldsymbol{A d}_{E} \mathbf{v}_{E}^{\mathrm{kr}}(A) \geq \mathbf{A d v}_{E}^{\mathrm{tkr}}(A)
$$

Why? If the K^{\prime} that A returns equals the target key K, then, by the Fact, the input-output examples $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$ will of course be consistent with K^{\prime}.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

Doing more queries in the tkr (target key recovery) game makes it:
\square Easier.
\square Harder.
\square It depends.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

Doing more queries in the tkr (target key recovery) game makes it:

- Easier.
\square Harder.
\square It depends.
(but the difference can be very close to zero!)

Doing more queries in the kr (consistent key recovery) game makes it:
\square Easier.
\square Harder.
\square It depends.

Impact of the number of queries

Another comparison: same game, but adversaries that differ in the number of queries they make.

Doing more queries in the tkr (target key recovery) game makes it:

- Easier.
\square Harder.
\square It depends.
(but the difference can be very close to zero!)

Doing more queries in the kr (consistent key recovery) game makes it:
\square Easier.
\square Harder.

- It depends.
(harder for trivial adversaries. Becomes easier later when Adv ${ }^{\text {tkr }}$ starts to increase)

