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Lecture 2

Classical Encryption

Examples

Perfect security



Syntax

A symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms:

K

K

E DM C C M or ⊥

$

A
(adversary)

K is the key generation algorithm.
E is the encryption algorithm.
D is the decryption algorithm.
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Correct decryption requirement

K

E DM C C M or ⊥

For all K , M we have
DK (EK (M)) = M
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Terminology recall

Alphabets:

Σ1 = {A, B, C, . . . , Z}
Σ2 = {A, B, C, . . . , Z} ∪ {⊔, . , ?, . . .}
Σ3 = {0, 1}

Strings:

Over Σ1: HELLO, BZYK, ...
Over Σ2: HOW ⊔ ARE ⊔ YOU?
Over Σ3: 01101

Denote by Σ∗ the set of all strings over alphabet Σ:
{A, B, . . . , Z}∗

{0, 1}∗

The empty string, denoted ε, is always in Σ∗.
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Length and size

If s is a string then |s| is the number of symbols in it:

|HELLO| = 5
|HOW ⊔ ARE ⊔ YOU?| =

12
|01101| = 5

We denote by s[i ] the i-th symbol of string s:

s[3] = L if s = HELLO

s[5] = A if s = HOW ⊔ ARE ⊔ YOU?
s[2] = 1 if s = 01101

If S is a set then |S| is its size:

|{A, B, . . . , Z}| = 26
|{0, 1}8| = 28 = 256
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Functions

Notation: functions
Then notation π : D → R means π is a map (function) with

inputs drawn from the set D (the domain)
outputs falling in the set R (the range)

Example: Define π : {1, 4, 6} → {0, 1} by

x 1 4 6
π(x) 1 1 0

Functions can be specified as above or sometimes by code.

Example: The above can also be specified by

Alg π(x)
Return x mod 3
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Permutations

Definition: permutation
A map (function) π : S → S is a permutation if it is one-to-one.
Equivalently, it has an inverse map π−1 : S → S.

Example: S = {A, B, C}

A permutation and its inverse:

x A B C
π(x) C A B

y A B C
π−1(x) B C A

Not a permutation:

x A B C
π(x) C B B
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Counting permutations

There are many different possible permutations π: S → S on a given set
S. How many?

To be specific: How many permutations π : S → S are there on the set
S = {A, B, C}?

Answer: 3! = 3 ∗ 2 ∗ 1 = 6

x π(x)
A ←− 3 choices: A,B,C
B ←− 2 choices: not π(A)
C ←− 1 choice: not π(A),π(B)

In general there are |S|! permutations π : S → S.
Note that n! is a fast-growing function: n! has roughly n log n bits.

We let Perm(S) denote the set of all these permutations.
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Substitution ciphers

Alphabet Σ
Key is a permutation π : Σ→ Σ defining the encoding rule
Plaintext M ∈ Σ∗ is a string over Σ
Encryption of M = M[1] · · ·M[n] is

C = π(M[1]) · · ·π(M[n])

Decryption of C = C [1] · · ·C [n] is

M = π−1(C [1]) · · ·π−1(C [n])
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Substitution ciphers

Definition: substitution cipher
A substitution cipher over alphabet Σ is a symmetric encryption scheme
SE = (K, E ,D) in which the key output by K is a permutation π : Σ→ Σ,
and

Algorithm Eπ(M)
For i = 1, . . . , |M| do

C [i ]← π(M[i ])
Return C

Algorithm Dπ(C)
For i = 1, . . . , |C | do

M[i ]← π−1(C [i ])
Return M
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Setup for Examples

Σ = {A, B, . . . , Z} ∪ {⊔, . , ?, !, . . .}

Plaintexts are members of Σ∗, which means any English text (sequence of
sentences) is a plaintext.

For simplicity we only consider permutations that are punctuation
respecting:

π(⊔) = ⊔ , π(.) = . , π(?) =? , . . .

so punctuation is left unchanged by encryption.
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Example

σ A B C D E F G H I J K L M
π(σ) B U P W I Z L A F N S G K

σ N O P Q R S T U V W X Y Z
π(σ) D H T J X C M Y O V E Q R

Then encryption of plaintext M = HI THERE is
C = π(H)π(I)π(⊔)π(T)π(H)π(E)π(R)π(E) = AF MAIXI

τ A B C D E F G H I J K L M
π−1(τ) H A S N X I L O E Q M G T

τ N O P Q R S T U V W X Y Z
π−1(τ) J V C Y Z K P B W D R U F

Decryption of ciphertext C = AF MAIXI is
π−1(A)π−1(F)π−1(⊔)π−1(M)π−1(A)π−1(I)π−1(X)π−1(I) = HI THERE
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Cryptanalysis

Plaintext recovery
Basic adversary goal is plaintext recovery: given ciphertext C it aims to
compute M = D(π, C).

This is easy if adversary knows π (hence π−1), but adversary is not given
the key π.

However it does know what encryption scheme is used. (Meaning, in this
case, a substitution cipher.)

Note: in this class, we will define many other possible goals for the
adversary.

UCSD CSE107: Intro to Modern Cryptography; Classical Encryption 12/49



Kerckhoffs’s principle

E
Ke

M
C

Designers sometimes hope to get security by keeping the description of the
encryption procedure E private. This is called security through obscurity.

But this prohibits standardization and usage.
And it tends not to add to security since adversaries are remarkably good
at reverse engineering a description of E from any software or hardware
artifact (executable program, encryption device, . . . ).
(Example: RC4 and “alleged-RC4”.)
Kerckhoffs’s principle (1883)
Good design (Kerckhoffs’s principle):

Adversary knows the system E .
The only thing it doesn’t know is the key in use.
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Cryptanalysis of a substitution cipher

Adversary has a ciphertext
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI OX
PTI.

Exploit structure of English: In typical text

E is the most common letter
Next are T, A, O, I, N, S, H, R

A letter by itself (like T in ciphertext) can only be A or I.

Etc.
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Frequency counts

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI OX
PTI.

A B C D E F G H I J K L M
3

N O P Q R S T U V W X Y Z
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Frequency counts
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Frequency counts

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI OX
PTI.

A B C D E F G H I J K L M
3 3 7 4 0 0 2 3 9 0 4 0 0

N O P Q R S T U V W X Y Z
1 8 3 2 4 0 8 3 4 0 13 0 0
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Cryptanalysis
E E E E ’ E E E

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

E E: E E ’ , E
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

E .
OX PTI.

A B C D E F G H I J K L M
3 3 7 4 0 0 2 3 9 0 4 0 0

N O P Q R S T U V W X Y Z
1 8 3 2 4 0 8 3 4 0 13 0 0

τ A B C D E F G H I J K L M
π−1(τ)

τ N O P Q R S T U V W X Y Z
π−1(τ) E
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Cryptanalysis
E E E E ’ E E E

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

E E: E E ’ , E
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

E .
OX PTI.

τ A B C D E F G H I J K L M
π−1(τ)

τ N O P Q R S T U V W X Y Z
π−1(τ) H E

OX in ciphertext ⇒ π−1(O) ∈ {B,H,M,W}

Guess π−1(O) = H since O has pretty high frequency
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Cryptanalysis
HE E E E ’ E HE HE H

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

E E: HE HE ’ , HE
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

HE .
OX PTI.

τ A B C D E F G H I J K L M
π−1(τ)

τ N O P Q R S T U V W X Y Z
π−1(τ) H E
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Cryptanalysis
HE E E E ’ E HE HE H

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

E E: HE HE ’ , HE
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

HE .
OX PTI.

*HE*E
COXBX

Could be: THERE,THESE,WHERE,...

Guess π−1(C) = T since there is no ? in ciphertext so WHERE is unlikely.

So π−1(B) ∈ {R,S}
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Cryptanalysis
THE E E T T E ’ E HE HE H
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

T E TE: HE HE ’T T, HE
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

HE .
OX PTI.

τ A B C D E F G H I J K L M
π−1(τ) T

τ N O P Q R S T U V W X Y Z

π−1(τ) H E

T is a single-letter word so π−1(T ) ∈ {A, I}
We know π−1(B) ∈ {R,S}
So TBX could be: ARE,ASE,IRE,ISE
We guess ARE
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Cryptanalysis

THERE ARE T T E A A ’ E HE HE H
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

T E ATE: HE HE A ’T A R T, A HE
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

HE A .
OX PTI.

τ A B C D E F G H I J K L M

π−1(τ) R T

τ N O P Q R S T U V W X Y Z

π−1(τ) H A E

*T
DC

D must be: A or I but T is A so D is I.

Etc....!
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Cryptanalysis
THERE ARE TWO TIMES IN A MAN’S LIFE WHEN HE SHOULD
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU

NOT SPECULATE: WHEN HE CAN’T AFFORD IT, AND WHEN
IKC RNXPQATCX: VOXI OX PTI’C THHKBU DC, TIU VOXI

HE CAN.
OX PTI.

τ A B C D E F G H I J K L M

π−1(τ) L R T I M F N O

τ N O P Q R S T U V W X Y Z

π−1(τ) P H C U S A D W E
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Assessment of security of substitution ciphers

Defenders may argue

Cryptanalysis requires long ciphertext
Harder if π is not punctuation-respecting

In fact substitution ciphers or variations and enhancements have been
almost universally used until relatively recently.

Yet they are fundamentally flawed.
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Hydraulic Telegraph

(Ancient Greece, 3rd and 4th century BC; link)

Messages written at prescribed heights on a rod.

To send a message:
1. Signal start using torch.
2. Open spigot.
3. When water level reaches desired message,

close spigot.
4. Signal stop using torch.

Is this a secure encryption scheme?
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Voting

Shall California adopt permanent Daylight Savings Time?

YES/SI
NO/NO

Voters V1, V2, V3, V4, V5 cast votes at polling station.

Example votes: YNYYN

Polling station Tally center
π(Y)π(N)π(Y)π(Y)π(N)

Is this secure?
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Voting

Say π(Y) = A and π(N) = B. Adversary sees

π(Y)π(N)π(Y)π(Y)π(N) = ABAAB

Adversary can infer relations: V1, V3 had same vote.

Adversary might be V1

It knows its own vote is Y

So given ciphertext ABAAB it infers that A represents Y

But then B must represent N

Adversary knows everyone’s vote!
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The weakness

The weakness of a substitution cipher exploited above is simply that the
same symbol is always encoded in the same way.

Attack does not require long plaintexts, and does not need π to be
punctuation-respecting.
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What happened?

Critical security thinking yielded a scenario where substitution ciphers fail
miserably:

Few possible plaintext symbols (Y or N)
Adversary is one of the users (voters)
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What did we learn?

Security depends on usage
Evaluating security requires being creative about coming up with
usage scenarios that test the scheme
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Good cryptography

A good scheme is one that

Is secure in ALL (reasonable) scenarios
Does not rely on obscurity. (i.e. encryption devices, or software, are
known to the adversary)
Is secure regardless of what type of data (e.g., Y,N strings) is being
encrypted
Even if adversary knows some decryptions, it shouldn’t be able to
produce others.
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One time pad

Key K $←{0, 1}m is a random m-bit string

Plaintext M ∈ {0, 1}m is an m-bit string

Algorithm EK (M)
C ← K ⊕M
Return C

Algorithm DK (C)
M ← K ⊕ C
Return M

Assume only a single message M is ever encrypted under one key.
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Voting

Represent Y by 1 and N by 0
Voters V1, . . . , Vm cast votes 1, 0, 1, 1, 0, . . .

Let M = 10110 · · ·
Encryption is C = K ⊕M

Adversary has C but NOT K

Adversary cannot tell whether two people have same vote.

Even if adversary is V1 and knows its own vote is 1, it cannot determine
votes of other parties.
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A measure of security

Let SE = (K, E ,D) be a symmetric encryption scheme. For any message
M and ciphertext C we are interested in

Pr [EK (M) = C ]

where the probability is over the random choice K $←K and over the coins
tossed by E if any.
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Example

Messages:
00 01 10 11

00 01 10 11 00
01 01 11 10 00

Keys: 10 00 11 01 11
11 11 10 01 11

The table entry in row K and column M is EK (M).

Pr[EK (00) = 01] =

2
4 = 1

2
Pr[EK (01) = 01] = 0
Pr[EK (10) = 11] = 1

4
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Perfect security

Definition: perfect security
Let SE = (K, E ,D) be a symmetric encryption scheme. We say that SE is
perfectly secure if for any two messages M1, M2 ∈ Plaintexts and any C

Pr [EK (M1) = C ] = Pr [EK (M2) = C ] .

The probability is over the random choice K $←K and over the coins
tossed by E if any.

Intuitively: Given C , and even knowing the message is either M1 or M2 the
adversary cannot determine which.
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Perfect security

Definition requires that

For all M1, M2, C we have

Pr[EK (M1) = C ] = Pr[EK (M2) = C ] .

If we want to show the definition is not met, we need to show that

There exists M1, M2, C such that

Pr[EK (M1) = C ] ̸= Pr[EK (M2) = C ] .
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Example

Messages:
00 01 10 11

00 01 10 11 00
01 01 11 10 00

Keys: 10 00 11 01 11
11 11 10 01 11

The table entry in row K and column M is EK (M).
Pr[EK (00) = 01] = 2

4 = 1
2

Pr[EK (01) = 01] = 0
Is this encryption scheme perfectly secure?

No, because for M1 = 00, M2 = 01 and C = 01 we have

Pr [EK (M1) = C ]︸ ︷︷ ︸
1/2

̸= Pr [EK (M2) = C ]︸ ︷︷ ︸
0

.
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(Im)Perfect security of substitution ciphers

A substitution cipher is NOT perfectly secure.

Formally:

Claim: Substitution is not perfectly secure
Let SE = (K, E ,D) be a substitution cipher over the alphabet Σ
consisting of the 26 English letters. Assume that K picks a random
permutation over Σ as the key. That is, its code is

π $← Perm(Σ) ; return π .

Let Plaintexts be the set of all three letter English words. Then SE is not
perfectly secure.
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Proof of claim

To show: there exist M1, M2, C ∈ Σ3 such that
Pr [Eπ(M1) = C ] ̸= Pr [Eπ(M2) = C ] .

We have replaced K with π because the key here is a permutation.

Let

C = XYY

M1 = FEE

M2 = FAR

Then

Pr [Eπ(M2) = C ] = Pr [π(F)π(A)π(R) = XYY]
= 0

Because π(A) cannot equal π(R)
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Proof of claim

Pr [Eπ(M1) = C ] = Pr [Eπ(FEE) = XYY]

= |{ π ∈ Perm(Σ) : Eπ(FEE) = XYY }|
|Perm(Σ)|

= |{ π ∈ Perm(Σ) : π(F)π(E)π(E) = XYY }|
|Perm(Σ)|

= 24!
26!

= 1
650 .
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Summary

Definition: perfect security
Let SE = (K, E ,D) be a symmetric encryption scheme. We say that SE is
perfectly secure if for any two messages M1, M2 ∈ Plaintexts and any C

Pr [EK (M1) = C ] = Pr [EK (M2) = C ] .

Claim: Substitution is not perfectly secure
Let SE = (K, E ,D) be a substitution cipher over the alphabet Σ
consisting of the 26 English letters. Assume that K picks a random
permutation over Σ as the key. Let Plaintexts be the set of all three letter
English words. Then SE is not perfectly secure.

We have proved the claim by presenting M1, M2, C such that

Pr [EK (M1) = C ] ̸= Pr [EK (M2) = C ] .
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Intuition for One-Time-Pad (OTP) security

Recall that One-Time-Pad encrypts M to EK (M) = K ⊕M.

Suppose adversary gets ciphertext C = 101 and knows the plaintext M is
either M1 = 010 or M2 = 001. Can it tell which?

No, because C = K ⊕M so

M = 010 iff K = 111
M = 001 iff K = 100

but K is equally likely to be 111 or 100 and adversary does not know K .
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Perfect security of OTP

Claim: OTP is perfectly secure
Let SE = (K, E ,D) be the OTP scheme with key-length m ≥ 1. Then SE
is perfectly secure.

Want to show that for any M1, M2, C

Pr [EK (M1) = C ] = Pr [EK (M2) = C ]

That is
Pr [K ⊕M1 = C ] = Pr [K ⊕M2 = C ]

when K $←{0, 1}m.
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Example: m = 2

Messages:
00 01 10 11

00 00 01 10 11
01 01 00 11 10

Keys: 10 10 11 00 01
11 11 10 01 00

The entry in row K , column M of the table is EK (M) = K ⊕M.

Pr[EK (00) = 01] =

1
4

Pr[EK (10) = 01] = 1
4
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Proof of claim

Probability for M1

Pr [EK (M1) = C ] = Pr [K ⊕ M1 = C ]

= |{ K ∈ {0, 1}m : K ⊕ M1 = C }|
|{0, 1}m|

= 1
2m .

In fact, OTP is the only encryption scheme that achieves Shannon’s
perfect security.
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Proof of claim

Same for M2

Pr [EK (M2) = C ] = Pr [K ⊕ M2 = C ]

= |{ K ∈ {0, 1}m : K ⊕ M2 = C }|
|{0, 1}m|

= 1
2m .

In fact, OTP is the only encryption scheme that achieves Shannon’s
perfect security.
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Perfect security: Plusses and Minuses

+ -
Very good privacy Key needs to be as

long as message
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What next

We want schemes to securely encrypt

arbitrary amounts of data
with a single, short (e.g., 128 bit) key

This will be possible once we relax our goal from perfect to computational
security.

Plan:

Study the primitives we will use, namely block ciphers
Understand and define computational security of block ciphers and
encryption schemes
Use (computationally secure) block ciphers to build (computationally
secure) encryption schemes
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