Lecture 1:
Course Introduction

CSE 123: Computer Networks
Aaron Schulman (aka Aaron Shalev)
Lecture 1 Overview

- Class overview
 - Expected outcomes
 - Structure of the course
 - Policies and procedures

- A brief overview of Computer Networking
 - High-level concepts
 - An end-to-end example
Personnel and office hours

- **Instructor:** Aaron Schulman (aka Aaron Shalev)
 - Office hours Monday & Wednesday 4pm-5pm
 - [7-8am in many countries in East Asia]

- **Project 1 / Homework / Discussion TA:**
 - Zesen ”Jason” Zhang (8-9pm Wednesday and 4-5pm Friday)

- **Project 2 / Homework / Discussion TA:**
 - Aritra Basu (8-9pm Monday and 2-3pm Thursday)

- **Project Tutors:**
 - Xuyang Cao (3-4pm Monday and Thursday, and 7-8pm Friday)
 - Rohith Kasar (TBD)
 - Pramith Reddy (12:30-1:30pm Monday, Wednesday, Friday)
Prereqs

- CSE30, CSE101, and CSE110 – *not* CSE120
 - Undergrads can’t enroll without them
 - We expect it (or equivalent) even for grad students

- Programming experience
 - We will be assigning programming projects in C/C++
 - This course will not teach you C. The TAs/Tutors will help, but you need to learn it on your own if you don’t already know.
Expected Outcomes

- This course *will* teach you the *fundamentals* of computer networks:
 - Layering, signaling, framing, MAC, switching, routing, naming, Internetworking, congestion control, router design, etc.
 - At the end of this course you should completely understand what’s actually happening when you use the web or even Zoom

- This course *will not* teach you signals and coding
 - Take an EE course to learn about physical layer modulation, encoding, etc. on different hardware technologies

- Similarly, we will not cover Internet apps/services
 - CSE124 covers application layer protocols, Web, etc.
CSE 123 Class Overview

- Course material taught through class lectures, textbook readings, and discussion sections
- Course assignments are
 - Homework questions (based on lecture)
 - Four substantial programming projects
- Discussion section: (Friday 2pm on Zoom)
 - Help you get started on the projects
 - Lecture material and homework
 - Additional networking topics
- Discussion board (Piazza.com)
 - The place to ask questions about lecture, hw, projects, etc.
Textbook

PDF, eBook, HTML, and source! available at:
Homeworks

- There will be four homeworks throughout the quarter
 - All will be made available on GradeScope
 - Reinforce lecture material...no better practice
 - One week to complete each

- Collaboration vs. cheating
 - You should discuss homework problems with others
 » You can learn a lot from each other
 - But there is a distinction between collaboration and cheating
 - Rule of thumb: Discuss together on Piazza and Discord (or whatever you use), and write up answers independently
 - Cheating is copying from other student’s homeworks or solution sets, searching for answers on the Web, etc.
Projects

- There will be four programming projects
 - You will have [1.5 – 2] weeks to complete each
 - The first will be assigned THIS WEEK, yay!

- The projects must be completed in C/C++
 - We will provide skeleton code for you to use
 - Your job is to fill in the interesting/hard parts
 - The TAs will be available to help with coding

- The projects are INDIVIDUAL assignments
 - All code must be your own (not copied from GitHub!)
 - OK to discuss design ideas, NOT OK to share/look at code
 - Projects assigned AND SUBMITTED via private GitHub repo
Computer Facilities for Projects

- You can also use your home machine
 - The project source will work on Windows/OS X/Linux
 - Windows folks should install Windows Subsystem for Linux (WSL)
 - Graders will test on GradeScope machines
 - If there are discrepancies between your machine and GradeScope we will accommodate them (as you can demo working code over Zoom)
Exams

- **Midterm**
 - Monday, May 3\(^{rd}\)
 - Covers first third to half of class

- **Final**
 - Wednesday, June 11\(^{th}\)
 - Covers second half of class + selected material from first part
 - I will be explicit about the material covered

- No makeup exams (24 hours to complete)
 - Unless dire circumstances

- All exams on GradeScope for 24 hours, and open book
Grading

- Homeworks: 20%
 - Think of these collectively as a take-home midterm

- Midterm: 20%

- Final: 20%

- Projects: 40%
 - Divided evenly among the four projects
How to *Succeed in CSE 123*

- Come to or watch recorded lecture / discussion
 - Lecture material is the primary basis for exams and directly relates to the projects

- Do the homework
 - Excellent practice for the exams, and some homework problems are exercises for helping with the project
 - 20% is actually a significant fraction of your grade (easily the difference between an A and a C)

- Read the book
 - Reinforces concepts we talk about in lecture, helps with homework
How to Succeed (2)

- Ask questions in lecture, office hours, or email
 - Asking questions is the best way to clarify lecture material at the time it is being presented
 - Bring your concerns to the professor early (avoid snowball)
 - Office hours and Piazza will help with homeworks, projects

- Wait until the last couple of days to start a project
 - The projects cannot be done in the last couple of days
 - Repeat: The projects cannot be done in the last couple of days
Canvas is your one-stop shop

- Course announcements
- Links to all relevant course materials and cloud services
 - Course Homepage – Syllabus and Project specs
 - Zoom – Lecture and Discussion
 - Piazza – Project Discussion
 - Gradescope – Project/Homework/Exam Grades
 - Github – Project Submission
Class Web Page

http://www.cs.ucsd.edu/classes/sp21/cse123-a/

- Serves many roles…
 - Course syllabus and schedule (updated as quarter progresses)
 » Lecture slides
 - Project information
Questions

- Before we start the material, any questions about the class structure, contents, etc.?

- Note that this is “remote teaching” (COVID)
 - We will do the best to give you the best experience possible
 - You may hear my kids having fun
 - Zoom may fail, (but we will learn about why in this course!)
 - Pass/Fail is a perfectly reasonable option
 » Pass will be a C- or better
Protocols & Layering
- Manage complexity of comm. by decomposing the tasks
- Standardizing syntax and semantics to support interoperability

Naming
- Agreeing on how to describe a host, application, network, etc.

Switching & Routing
- Deciding how to get from here to there
- Forwarding messages across multiple physical components

Resource Allocation
- Figuring out how to share finite bandwidth, memory, etc.
A “Simple” Task

- Send information from one computer to another
 - Endpoints are called hosts
 - Could be computer, iPhone, laptop, etc.
 - The plumbing is called a link
 - We don’t care what the physical technology is: Ethernet, wireless, cellular, etc.
Actually Quite Complicated

- **ROUHGLY**, what happens when I click on a Web page from UCSD?

![Diagram showing a connection between My iPhone and www.muirskate.com through the Internet.]

Image of My iPhone on the left and the UCSD website on the right connected by the Internet.
Web request (HTTP)

- Turn click into HTTP request

```
GET https://www.muirskate.com/ HTTP/1.1
Host: www.muirskate.com
Connection: keep-alive
...
```
Name resolution (DNS)

- Where is www.muirskate.com?

My computer
(132.239.9.64)

Local DNS server
(132.239.51.18)

Where is www.muirskate.com?

Many hosts have it, one is 104.20.86.126
Data transport (TCP)

- Break message into packets (TCP segments)
- Should be delivered reliably & in-order

GET http://www.muirskate.com HTTP/1.1
Host: www.muirskate.com
Connection: keep-alive
...

“and let me know when they got there”
Global Network Addressing

- Address each packet so it can traverse network and arrive at host

My computer (132.239.9.64)

www.muirskate.com (104.20.86.126)
Each router forwards packet towards destination
Link management (WiFi)

- Break stream of bits into frames
- Media Access Control (MAC)
 - Can I send now? Can I send now?
- Send frame
Physical layer

802.11ac Wireless Access Point

5.8 Ghz Radio
OFDM/MIMO 4x4
1 - 1,300 Mbps

Ethernet switch/router

Cat 6 Cable (4 pairs)
NBase-T Ethernet
10 Gbps

To campus backbone

100 Gbps Ethernet

CSE 123 – Lecture 1: Course Introduction
For Next Class…

- Browse the course page on Canvas
- Read Chapter 1.3 and 2.3
- Next class: Layers and Framing