Legal Notice

The Zoom session for this class will be recorded and made available asynchronously on Canvas to registered students.
Announcements

1. HW 7 is due today!

2. Volunteer to grade HW 7!

3. HW 8 is out today! Due in one week! Friday!
Last time:
- Number field sieve

This time:
- Lattice-based cryptanalysis
What is a lattice?

Definition
A lattice is a subset of \mathbb{R}^n generated by integer linear combinations of some linearly independent basis $\{b_1, \ldots, b_n\}$.

- Has algebraic properties (it's a group under addition).
- Has geometric properties (it lives in \mathbb{R}^n so has dot product, distance).

Represent as Cartesian coordinates.

- Origin: $(0,0,\ldots,0)$
- $b_i = (z_1, z_2, \ldots, z_n)$
- $z_i \in \mathbb{Z} \cup \mathbb{Q}$
What is a lattice?

Definition

A **lattice** is a discrete additive subgroup of \mathbb{R}^n.

- **Discrete**: $\exists \delta > 0$ s.t. $|v_i - v_j| > \delta$ for all $v_i, v_j \in L(B)$.
- **Additive subgroup**: closed under addition.
Properties of lattices: Bases

- In n dimensions a lattice has a basis of size at most n.
- The basis is not unique.

Let $L(B)$ be the lattice generated by B. To tell if $L(B) = L(B')$, one can:
- Put B, B' in canonical form (Hermite normal form) and compare.
- Poly-time.
Properties of lattices: Determinant

Definition
The determinant of a lattice with a basis matrix B is $|\det B|$.

- The determinant is invariant for a given lattice.
- Gives volume of fundamental parallelepiped.
Properties of lattices: Minima

Let \(\lambda_1 > 0 \) be the length of the shortest vector in the lattice.

Theorem (Minkowski)

\[
\lambda_1(L) < \sqrt{n} \det L^{1/n}
\]

Can define *successive minima* \(\lambda_i \), the length of the shortest vector linearly independent to the vectors achieving the \(i - 1 \) successive minima.
Computational problems on lattices: SVP

Shortest Vector Problem (SVP)
Given an arbitrary basis for L, find the shortest vector in L.

• SVP is NP-hard.
Computational problems on lattices: CVP

Closest Vector Problem (CVP)
Given an arbitrary basis for L, and a point x find the vector in L closest to x.

- CVP is NP-hard.
Approximation results for SVP

Input: Lattice basis B.

Desired output: Vector of length $\gamma \lambda_1(L(B))$.

\[1 \quad \sqrt{n} \quad O(n \log n) \quad \gamma \quad n^{O(1)} \quad 2^{O(n \log \log n / \log n)} \]

NP-hard

not NP-hard (NP \cap co-NP)

worst case \rightarrow average case reduction

NP-hard \cap co-NP

cryptography

polynomial time algorithm
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a reduced basis \(\{ b_i \} \) s.t.

\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a *reduced* basis \(\{b_i\} \) s.t.

\[|b_i| \leq 2^{(n-1)/2} \lambda_i \]

Theorem (LLL (Simplified Version))

We can find a vector of length

\[|v| < 2^{\dim L} (\det L)^{1/\dim L} \]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a *reduced* basis \(\{b_i\} \) s.t.

\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]

Theorem (LLL (Simplified Version))

We can find a vector of length

\[
|\nu| < 2^{\dim L} (\det L)^{1/\dim L}
\]

- In practice on random lattices, LLL finds
 \(\nu = 1.02^n (\det L)^{1/\dim L} \). [Nguyen, Stehle]
Algorithmic results for SVP

Lenstra Lenstra Lovasz (LLL)

Given a basis for a lattice can in polynomial time find a *reduced* basis \(\{ b_i \} \) s.t.

\[
|b_i| \leq 2^{(n-1)/2} \lambda_i
\]

Theorem (LLL (Simplified Version))

We can find a vector of length

\[
|v| < 2^{\dim L} (\det L)^{1/\dim L}
\]

- In practice on random lattices, LLL finds
 \(v = 1.02^n (\det L)^{1/\dim L} \). [Nguyen, Stehle]

BKZ

Given a lattice basis, can in time \(2^{O(k)} \) find a reduced basis s.t.

\[
|b_i| \leq k^{O(n/k)}. \lambda_i
\]
The “two faces” of lattices in cryptography

- **Cryptanalysis:** Can use approximation algorithms for SVP in lattices to cryptanalyze a wide variety of classical cryptography:
 - Attacks on low public exponent RSA
 - Factoring with partial knowledge
 - (EC)DSA with partial information about nonces
 - Knapsack-based cryptosystems

- **Cryptographic constructions:**
 - Lattice problems appear to be hard to solve for quantum computers, so lattice-based cryptosystems among most promising candidates for post-quantum cryptography.
 - Algebraic structure of lattices leads to many interesting cryptographic constructions that may someday be practical, like fully homomorphic encryption, identity-based encryption, etc.
History: Lattices and cryptography

1910 Minkowski’s geometry of numbers
1973/1977 Public-key cryptography invented (GCHQ/RSA)
1978 Knapsack cryptography invented (Merkle-Hellmann)
1982 CVP NP-hard (van Emde Boas)
1982 LLL lattice basis reduction algorithm
 (Lenstra-Lenstra-Lovasz)
1983 LLL algorithm used against knapsack cryptosystems
 (Lagarias-Odlyzko)
1996 Lattice-based cryptosystems invented (Ajtai-Dwork)
1997 SVP NP-hard (Ajtai)
2005 LWE problem (Regev)
2009 Fully homomorphic encryption using ideal lattices
 (Gentry)
Subset Sum Problem

Input: Integers a_1, \ldots, a_n, target integer T.

Goal: Find a subset $\sum_S a_i = T$.

- NP-hard
- First attempt to base cryptography off of NP-hardness.
- All schemes have a “trapdoor" that lets the decrypter solve the problem. (e.g. super-increasing sequence working modulo some number.)
Solving subset sum with lattices

Input: Integers a_1, \ldots, a_n, target integer T.

Generate lattice from rows of matrix

\[
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
& -T
\end{bmatrix}
\]
Solving subset sum with lattices

Input: Integers a_1, \ldots, a_n, target integer T.

Generate lattice from rows of matrix

$$
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
1 & -T
\end{bmatrix}
$$

A solution $\sum_i b_i a_i = T$ determines a vector

$$v = (b_1, b_2, \ldots, 0) \quad |v|_2 \approx \sqrt{n/2}$$
Solving subset sum with lattices

Input: Integers \(a_1, \ldots, a_n\), target integer \(T\).

Generate lattice from rows of matrix

\[
\begin{bmatrix}
1 & a_1 \\
1 & a_2 \\
\vdots & \vdots \\
1 & -T
\end{bmatrix}
\]

A solution \(\sum_i b_i a_i = T\) determines a vector

\(v = (b_1, b_2, \ldots, 0)\) \(\quad |v|_2 \approx \sqrt{n/2}\)

- If this is much shorter than non-solutions, we might find it.

- LLL might find \(v\) if \(\sqrt{n/2} < 1.02^n T^{1/(n+1)}\)

- Proposed knapsack cryptosystems contained “trapdoors” that made problem easier to solve.
What’s wrong with this RSA example?

```python
message = Integer('squeamishossifrage', base=35)
N = random_prime(2^512) * random_prime(2^512)
c = message^3 % N

>>> Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```
The message is too small.
This is why we use padding.
What’s wrong with this RSA example?

message = Integer('squeamishossifrage', base=35)
N = random_prime(2^512) * random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
What’s wrong with this RSA example?

```python
message = Integer('squeamishossifrage',base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
'squeamishossifrage'
```

The message is too small.

This is why we use padding.
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N

sage: int(c^((1/3)))==message
False
This is a stereotyped message. We might be able to guess the format.
N = random_prime(2^150)*random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish',base=35)
c = message^3 % N

a = Integer('thepasswordfortodayis000000000',base=35)
\[N = \text{random}_\text{prime}(2^{150}) \times \text{random}_\text{prime}(2^{150}) \]

\[\text{message} = \text{Integer}('\text{thepasswordfortodayisswordfish}', \text{base}=35) \]

\[c = \text{message}^3 \mod N \]

\[a = \text{Integer}('\text{thepasswordfortodayis000000000}', \text{base}=35) \]

\[X = \text{Integer}('\\text{x}\text{x}\text{x}\text{x}\text{x}\text{x}\text{x}', \text{base}=35) \]

\[M = \text{matrix}\left(\begin{bmatrix} X^3, 3X^2a, 3Xa^2, a^3-c \\ 0, NX^2, 0, 0 \\ 0, 0, NX, 0 \\ 0, 0, 0, N \end{bmatrix}\right) \]

\[B = M.\text{LLL}() \]

\[Q = B[0][0] \times x^3 / X^3 + B[0][1] \times x^2 / X^2 + B[0][2] \times x / X + B[0][3] \]

```
sage: Q.roots(ring=ZZ)[0][0].str(base=35)
'swordfish'
```
N = random_prime(2^150) * random_prime(2^150)
message = Integer('thepasswordfortodayisswordfish', base=35)
c = message^3 % N

a = Integer('thepasswordfortodayis0000000000', base=35)
X = Integer('xxxxxxxxxxxx', base=35)
M = matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3 - c],
 [0, N*X^2, 0, 0],
 [0, 0, N*X, 0],
 [0, 0, 0, N]])
B = M.LLL()
Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]
\[
N = \text{random_prime}(2^{150}) \times \text{random_prime}(2^{150})
\]
\[
\text{message} = \text{Integer('thepasswordfortodayisswordfish',base=35)}
\]
\[
c = \text{message}^3 \mod N
\]
\[
a = \text{Integer('thepasswordfortodayis000000000',base=35)}
\]
\[
X = \text{Integer('xxxxxxxxxxxx',base=35)}
\]
\[
M = \text{matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3-c],}
 [0,N*X^2,0,0],
 [0,0,N*X,0],
 [0,0,0,N]])}
\]
\[
B = M.\text{LLL}()
\]
\[
Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]
\]
\[
sage: Q.\text{roots(ring=ZZ)}[0][0].\text{str(base=35)}
\]
\[
'swordfish'
\]
Theorem (Coppersmith)

We can efficiently compute up to $1/e$-fraction of the bits of an RSA-encrypted message with public exponent e if we know the rest of the plaintext.

```
sage: N.nbits()
296
sage: Integer('swordfish',base=35).nbits()
46
```
Theorem (Coppersmith)

Given a polynomial f of degree d and N, we can efficiently find all roots r_i satisfying

$$f(r_i) \equiv 0 \mod N$$

when $|r_i| < N^{1/d}$.

In our case, our input polynomial looks like

$$f(x) = (a + x)^3 - c \equiv 0 \mod N$$

We are looking for a root $r = \text{swordfish}$ satisfying

$$f(r) = (a + \text{swordfish})^3 - c \equiv 0 \mod N$$

If "swordfish" is MSB, do message, odd 2^t shift here
Why is this an interesting theorem?

1. A general method to solve polynomials mod N would break RSA: If c is a ciphertext,

$$x^e - c \equiv 0 \mod N$$

has a root $x = m$ for m our original message.

2. There is an efficient algorithm to solve equations mod primes.
 • For a composite, factor into primes, solve mod each prime, and use Chinese remainder theorem and Hensel lifting to lift solution mod N.

3. By accepting a bound on solution size, Coppersmith’s method lets us solve equations without factoring N.
Coppersmith’s Algorithm Outline

Input: polynomial f, modulus N.
Output: a root r modulo N.

In our example, we have $f(x) = (x + a)^3 - c$.

We will construct a new polynomial $Q(x)$ so that

$$Q(r) = 0 \quad \text{over the integers.}$$

If we construct $Q(x)$ as

$$Q(x) = s(x)f(x) + t(x)N$$

with $s(x), t(x) \in \mathbb{Z}[x]$, then by construction

$$Q(r) \equiv 0 \mod N$$

(In other words, $Q(x) \in \langle f(x), N \rangle$ over $\mathbb{Z}[x]$.)
Manipulating polynomials

Input: $f(x) = x^3 + f_2 x^2 + f_1 x + f_0, N$

Output: $Q(x) \in \langle f(x), N \rangle$ over $\mathbb{Z}[x]$.

If we only care about polynomials Q of degree 3, then

$$Q(x) = c_3 f(x) + c_2 N x^2 + c_1 N x + c_0 N$$

with $c_3, c_2, c_1, c_0 \in \mathbb{Z}$.
Manipulating polynomials as coefficient vectors

We can represent elements of $\mathbb{Z}[x]$ as coefficient vectors:

$$g_d x^d + g_{d-1} x^{d-1} + \cdots + g_0 \quad \leftrightarrow \quad (g_d, g_{d-1}, \ldots, g_0)$$

If we construct the matrix

$$
\begin{bmatrix}
1 & f_2 & f_1 & f_0 \\
N & N & N & N
\end{bmatrix}
$$

Then the coefficient vector representing our polynomial

$$Q(x) = c_3 f(x) + c_2 N x^2 + c_1 N x + c_0 N$$

is an integer combination of the rows of this matrix.
Polynomial coefficient vectors and lattices

The set of vectors generated by integer combinations of the rows of our matrix

\[
\begin{bmatrix}
1 & f_2 & f_1 & f_0 \\
N & N & N & N
\end{bmatrix}
\]

is a lattice.
Coppersmith’s method outline

Input: $f(x) \in \mathbb{Z}[x], \ N \in \mathbb{Z}$. **Output:** r s.t. $f(r) \equiv 0 \ mod \ N$.

Intermediate output: $Q(x)$ such that $Q(r) = 0$ over \mathbb{Z}.

1. $Q(x) \in \langle f(x), N \rangle$ so $Q(r) \equiv 0 \ mod \ N$ by construction.

2. If $|r| < R$, then we can bound
 \[
 |Q(r)| = |Q_3 r^3 + Q_2 r^2 + Q_1 r + Q_0| \\
 \leq |Q_3| R^3 + |Q_2| R^2 + |Q_1| R + |Q_0|
 \]

3. If $|Q(r)| < N$ and $Q(r) \equiv 0 \ mod \ N$ then $Q(r) = 0$.

We want a Q in our lattice with short coefficient vector!
Coppersmith’s method outline

1. Construct a matrix of coefficient vectors of elements of $\langle f(x), N \rangle$.

2. Run a lattice basis reduction algorithm on this matrix.

3. Construct a polynomial Q from the shortest vector output.

4. Factor Q to find its roots.
Running Coppersmith’s method on our example

Input: \(f(x) = (x + a)^3 - c, \; N \)

Output: \(r < R \) such that \(f(r) \equiv 0 \) mod \(N \).

1. Construct lattice basis

\[
\begin{bmatrix}
R^3 & 3aR^2 & 3a^2R & a^3 - c \\
NR^2 & NR & N & N \\
& & & \\
& & & \\
\end{bmatrix}
\]

\(\text{dim } L = 4 \)

\(\text{det } L = R^6N^3 \)

Factor of \(R \) is so that \(Q(r) \leq |v| \) for \(v \in L \).
Running Coppersmith’s method on our example

Input: $f(x) = (x + a)^3 - c, \ N$

Output: $r < R$ such that $f(r) \equiv 0 \mod N$.

1. Construct lattice basis

$$\begin{bmatrix}
R^3 & 3aR^2 & 3a^2R & a^3 - c \\
NR^2 & NR & N \\
NR & N \\
\end{bmatrix}$$

$\det L = R^6 N^3$

Factor of R is so that $Q(r) \leq |v|$ for $v \in L$.

2. Ignoring approximation factor, we can solve when

$$|Q(r)| \leq |v_1| \leq \det L^{1/\dim L} < N$$

$$(R^6 N^3)^{1/4} < N$$

$R < N^{1/6}$

In my example I chose $\lg N = 296, \ \lg r = 46$.
Achieving the Coppersmith bound $r < N^{1/d}$

1. Generate lattice from subset of $\langle f(x), N \rangle^k$.
2. Allow higher degree polynomials.

Theorem (CHHS 2016)

It is not possible to solve for $r > N^{1/d}$ with any method that constructs auxiliary polynomial $Q(x)$.}