Lecture 26: Ethernet

CSE 123: Computer Networks
Aaron Schulman
Lecture 26 Overview

- Finishing up media access
 - Ethernet
 - Contention-free methods (rings)

- Moving beyond one wire
 - Link technologies have limits on physical distance
 - Also frequently on number of hosts connected
Q: What is max fraction slots successful?
A: Suppose n stations have packets to send

- Each transmits in slot with probability p
- Prob[successful transmission], S, is:

$$S = p \cdot (1-p)^{n-1}$$

- any of n nodes:

$$S = \text{Prob[one transmits]} = np(1-p)^{n-1}$$

(optimal p as $n \to \infty = 1/n$)

$$= \frac{1}{e} = .37$$

At best: channel used for useful transmissions 37% of time!
Carrier Sense (CSMA)

- Aloha transmits even if another host is transmitting
 - Thus guaranteeing a collision

- Instead, listen first to make sure channel is idle
 - Useful only if channel is frequently idle
 - Why?

- How long to be confident channel is idle?
 - Depends on maximum propagation delay
 - Small (<<1 frame length) for LANs
 - Large (>>1 frame length) for satellites
Retransmission Options

- **non-persistent CSMA**
 - Give up, or send after some random delay
 - Problem: may incur larger delay when channel is idle

- **1-persistent CSMA**
 - Send as soon as channel is idle
 - Problem: blocked senders all try to send at once

- **P-persistent CSMA**
 - If idle, send packet with probability p; repeat
 - Make sure $(p \times n) < 1$
Even with CSMA there can still be collisions. Why?

- If nodes can detect collisions, abort! *(CSMA/CD)*
 - Requires a minimum frame size ("acquiring the medium")
 - B must continue sending ("jam") until A detects collision

- Requires a **full duplex** channel
 - Wireless is typically half duplex; need an alternative
Collision Detection (CD)

- How can A know that a collision has taken place?
 - Worst case:
 - Latency between nodes A & B is d
 - A sends a message at time t and B sends a message at $t + d$ – epsilon (just before receiving A’s message)
 - B knows there is a collision, but not A… A must keep transmitting until it can tell if a collision occurred
 - How long? $2 * d$

- IEEE 802.3 Ethernet specifies max value of $2d$ to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits take 51.2us to send
 - So, Ethernet frames must be at least 64B (512 bits) long
 - Padding is used if data is too small

- Send jamming signal to insure all hosts see collision
 - 48 bit signal
Ethernet

- First **local area network** (LAN)
 - Developed in early ’70s by Metcalfe and Boggs at PARC
 - Originally 1Mbps, now supports 10Mbps, 100Mbps, 1Gbps, 10Gbps, 40Gbps, and 100Gbps flavors (400G in dev)

- Currently **the** dominant LAN technology
 - Becoming the dominant WAN technology
Classic Ethernet

- IEEE 802.3 standard wired LAN (modified 1-persistent CSMA/CD)
- Classic Ethernet: 10 Mbps over coaxial cable
 - All nodes share same wire
 - Max length 2.5km, max between stations 500m

```
+--------+--------+--------+ (wire) +--------+--------+
| nodes  | nodes  |        | (wire) | nodes  | nodes  |
```

- Framing
 - Preamble, 32-bit CRC, variable length data
 - Unique 48-bit address per host (bcast & multicast addr too)

```
Preamble (8)  Source (6)  Dest (6)  Len (2)  Payload (var)  Pad (var)  CRC (4)
```
Ethernet improvements

- Problems with random delay with fixed mean
 - Few senders = unnecessary delay
 - Many senders = unnecessary collisions

- Binary exponential back-off balances delay w/load
 - First collision: wait 0 or 1 min frame times at random, retry
 - Second time: wait 0, 1, 2, or 3 times
 - Nth time (n<=10): wait 0, 1, ..., 2^n-1 times
 - Max wait 1023 frames; give up after 16 attempts
Capture Effect

- Randomized access scheme is not fair

- Suppose stations A and B always have data to send
 - They *will* collide at some time
 - Both pick random number of “slots” (0, 1) to wait
 - Suppose A wins and sends
 - Next time they collide, B’s chance of winning is halved
 » B will select from 0,1,2,3 due to exponential back-off

- A keeps winning: said to have *captured* the channel
Ethernet Performance

- Much better than Aloha or CSMA in practice

- Source of protocol inefficiency: still collisions
 - More efficient to send larger frames
 » Acquire the medium and send lots of data
 - Less efficient if
 » More hosts – more collisions needed to identify single sender
 » Smaller packet sizes – more frequent arbitration
 » Longer links – collisions take longer to observe, more wasted bandwidth
Contention-free Protocols

- Problem with fixed partitioning:
 - Inefficient at low load (idle channels)

- Problem with contention-based protocols:
 - Inefficient at high load (collisions)

- Ideal(?): Contention-free protocols
 - Try to do both by explicitly taking turns
 - Can potentially also offer guaranteed bandwidth, latency, etc.
Contention-free Approaches

Polling

- Master node “invites” slave nodes to transmit in turn
 - Request to Send (RTS), Clear to Send (CTS) messages

- Problems:
 - Polling overhead
 - Latency
 - Single point of failure (master)

Token Passing

- Control **token** passed from one node to next sequentially.

- Problems:
 - Token overhead
 - Latency
 - Single point of failure (token)
Token Ring (802.5)

- Token rotates “permission to send” around nodes
- Sender injects packet into ring and removes later
 - Maximum token holding time (THT) bounds access time
 - Early or delayed token release
 - Round robin service, acknowledgments and priorities
- Monitor nodes ensure health of ring (alerts on failures)
FDDI
(Fiber Distributed Data Interface)

- Roughly a large, fast token ring
 - First real use of fiber optics in a LAN
 - 100 Mbps and 200km (FDDI) vs 4/16 Mbps and local (802.5)
 - Dual counter-rotating rings for redundancy
 - Complex token holding policies for voice etc. traffic

- Token ring advantages
 - No contention, bounded access delay
 - Support fair, reserved, priority access

- Disadvantages
 - Complexity, reliability, scalability
Why Did Ethernet Win?

- Failure modes
 - Token rings – network unusable
 - Ethernet – node detached

- Good performance in common case

- Completely distributed, easy to maintain/administer

- Easy incremental deployment

- Volume → lower cost → higher volume ….
Summary of Media Access

- How to divide shared channel among different users
 - Fixed partitioning (FDMA, TDMA, CDMA)
 - Guaranteed bandwidth for each user, but wasteful when not used and can’t allocate different bandwidth to different users
 - Contention-based protocols (CSMA, CSMA/CD)
 - Try and backoff if fail; dynamic allocation of bandwidth on demand, works well at load load but collisions a problem at high load
 - Contention-free protocols (Token Ring, FDDI, RTS/CTS)
 - Explicit turn-taking; strong guarantees on access time and can make bandwidth guarantees, but complex and fragile to failure

- But… aren’t there limits to what we can do with one shared channel?