SEARCH AND OPTIMIZATION PROBLEMS

Many problems involve finding the best solution from among a large space of possibilities.

- **Instance:** What does the input look like?
- **Solution format:** What does an output look like?
- **Constraints:** What properties must a solution have?
- **Objective function:** What makes a solution better or worse?
GLOBAL SEARCH VS LOCAL SEARCHES

• Like greedy algorithms, **backtracking algorithms break the massive global search for a solution, into a series of simpler local searches.** "Which edge do we take first? Then second? …"

• Unlike greedy algorithms, which guess the best local choice and only consider this possibility, **backtracking uses exhaustive search to try out all combinations of local decisions.**

GLOBAL SEARCH VS LOCAL SEARCHES

• However, we can often use the **constraints** of the problem to **prune** cases that are dead ends. Applying this recursively, we get a substantial savings over exhaustive search.

• This might take a long time to do. What are some other ideas in general?
BACKTRACKING: PROS AND CONS

The good:
- Very general, applies to almost any search problem
- Can lead to exponential improvement over exhaustive search
- Often better as heuristic than worst-case analysis
- FIRST STEP TO DYNAMIC PROGRAMMING

The bad:
- Since it works for very hard problems, usually only improved exponential time, not poly time
- Hard to give exact time analysis

MAXIMAL INDEPENDENT SET

Given a graph with nodes representing people, with an edge between any two people who are enemies, find the largest set of people such that no two are enemies. In other words, given an undirected graph, find the largest set of vertices such that no two are joined by an edge.
MAXIMAL INDEPENDENT SET

Given a graph with nodes representing people, with an edge between any two people who are enemies, find the largest set of people such that no two are enemies. In other words, given an undirected graph, find the largest set of vertices such that no two are joined by an edge.

- Instance:

- Solution format:

- Constraint:

- Objective:

MAXIMAL INDEPENDENT SET

- Greedy approaches?

 One may be tempted to choose the person with the fewest enemies, remove all of his enemies and recurse on the remaining graph.

 This is fast, but does not always find the best solution.
AN EXAMPLE
Greedy: all degree 3, pick any, say E
Neighbors (enemies) of E forced out of set

Lowest degree is now A
Many degree 2 vertices we could choose next, say G

Can pick any remaining one

Solution found by greedy is size 4
What is the solution space?
How much is exhaustive search?
What are the constraints?
What is the objective?
MAXIMAL INDEPENDENT SET

- What is the solution space? All subsets \(S \) of \(V \)
- How much is exhaustive search? \(2^{|V|} \)
- What are the constraints? For each edge \(e=\{u,v\} \), cannot have both \(u \) and \(v \) in \(S \)
- What is the objective? \(|S|\)

MAXIMAL INDEPENDENT SET

- Backtracking: Do exhaustive search locally. Use constraints to simplify problem along the way.
- What is a local decision? Do we pick vertex \(E \) or not.....
- What are the possible answers to this decision? Yes or No
- How do the answers affect the problem to be solved in the future?
 - If we pick \(E \): Recurse on subgraph \(G - \{E\} - \{E's\;neighbors\} \) (and add 1)
 - If we don't pick \(E \): Recurse on subgraph \(G - \{E\} \).
AN EXAMPLE

Local decision: Is E in S?
Possible answers: Yes, No

\[
\text{MIS}([A, B, C, D, E, F, G, H, I, J, K, L]) =
\begin{cases}
\text{YES} & 1 + \text{MIS}([A, B, G, H, I, J, K, L]) \\
\text{NO} & \text{MIS}([A, B, C, D, F, G, H, I, J, K, L])
\end{cases}
\]

AN EXAMPLE

Local decision: Is E in S?
YES OR NO

\[
\text{MIS}([A, B, C, D, E, F, G, H, I, J, K, L]) =
\begin{cases}
\text{YES} & 1 + \text{MIS}([A, B, G, H, I, J, K, L]) \\
\text{NO} & \text{MIS}([A, B, C, D, F, G, H, I, J, K, L])
\end{cases}
\]
Local decision: Is E in S?
Case 1: Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS
Go on to next local decision
Is G in S?
AN EXAMPLE

Local decision: Is E in S?
Case 1: Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS
Go on to next local decision

Is G in S?
Case 1a: Yes

Other three symmetrical: Get one more
Best set for Case 1a: 4, e.g, A,G,E,J

BUT NOW WE BACKTRACK

Local decision: Is E in S?
Case 1: Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS
Go on to next local decision

Is G in S?
Case 1b: No

Claim: I, H in some smallest MIS in Case 1b
BUT NOW WE BACKTRACK

Local decision: Is E in S?
Case 1: Yes
Consequences: Neighbors not in S
 Claim: A is now in some largest IS
 Go on to next local decision
 Is G in S?
 Case 1b: No

Claim: I, H in some smallest MIS in Case 1b
 Case 1b: Get set of size 5

BACKTRACK AGAIN

Case 1b is better than Case 1a, but we still don’t know its optimal

Need to consider Case 2: E is not in S
Case 1b is better than Case 1a, but we still don’t know its optimal.

Need to consider Case 2: E is not in S

Case 2a: A is in S
F is in S
Cycle of 5: get 2

So this case eventually gets 4
Now we KNOW Case 1b is best

AN EXAMPLE

12 vertices means 4096 subsets
But in the end, we only needed 4 cases

(OK, I used some higher principles, e.g. symmetry that our BT algorithm might not have)
CASE ANALYSIS AS RECURSION

MIS1(G = (V,E))
- IF |V|=0 return the empty set
- Pick vertex v
- \(S_1 := v + MIS1(G-v-N(v)) \)
- \(S_2 := MIS1(G-v) \)
- IF |S_2| > |S_1| return S_2, else return S_1

CORRECTNESS

MIS1(G = (V,E))
- IF |V|=0 return the empty set
- Pick vertex v
- \(S_1 := v + MIS1(G-v-N(v)) \)
- \(S_2 := MIS1(G-v) \)
- IF |S_2| > |S_1| return S_2, else return S_1

Induction on n. Base case n=0: MIS1 correctly returns empty set. Otherwise, use strong induction: \(S_1 \) is max ind set containing v, \(S_2 \) max ind. set not containing v. Better of two is MIS in G.
TIME ANALYSIS

MIS1(G= (V,E))
- IF |V|=0 return the empty set
- Pick vertex v
- \(S_1 := v + \text{MIS1}(G-v-N(v)) \)
- \(S_2 := \text{MIS1}(G-v) \)
- IF |S_2| > |S_1| return S_2, else return S_1

\[T(n) = 2T(n-1) + \text{poly}(n) \]
- Idea: bottom-heavy, so exact \(\text{poly}(n) \) doesn’t affect asymptotic time
- \(T(n) = 2^n \)
WHAT IS THE WORST CASE FOR MIS1?

- An empty graph with no edges, i.e., the whole graph is an independent set
- But then we should just return all vertices without trying cases
- More generally, if a vertex has no neighbors, the case when we include it $v + \text{MIS}(G-v)$ is always better than the case when we don’t include it, $\text{MIS}(G-v)$
MIS2(G = (V,E))
- IF |V|=0 return the empty set
- Pick vertex v
- S_1 := v + MIS2(G-v-N(v))
- IF deg(v)=0 return S_1
- S_2 := MIS2(G-v)
- IF |S_2| > |S_1| return S_2, else return S_1

Correctness: If deg(v) = 0, |S_2| < |S_1| so we’d return S_1 anyway
So does same thing as MIS1

WHAT IS THE WORST CASE FOR MIS2?
WHAT IS THE WORST CASE FOR MIS2?

If the graph is a line and we always pick the end, we recurse on one line of size n-1 and one of size n-2

\[T(n) = T(n-1) + T(n-2) + \text{poly}(n) \]

\[T(n) = O(\text{Fib}(n)) = O(2^{0.7n}) \]

Still exponential but for medium sized n, makes huge difference

n=80: \(2^{56} = \text{minute of computer time}, 2^{80} = 16 \text{ million minutes}\)

CAN WE DO BETTER?

In the example, we actually argued that we should add vertices of degree 1 as well.

Modify-the-solution proof:
- Say v has one neighbor u.
- Let S_1 be the largest ind set with v and let S_2 be the largest ind. set without v.
- Let S' = S_2 - \{u\} + \{v\}. S' is an independent set, and is at least as big as S_2, and contains v. Thus, S_1 is at least as big as S', which is at least as big as S_2. So don’t bother computing S_2 in this case.
IMPROVED ALGORITHM

\[\text{MIS3}(G = (V,E)) \]

- IF \(|V|=0\) return the empty set
- Pick vertex \(v\)
- \(S_1 := v + \text{MIS3}(G-v-N(v))\)
- IF \(\text{deg}(v) = 0 \text{ or } 1\) return \(S_1\)
- \(S_2 := \text{MIS3}(G-v)\)
- IF \(|S_2| > |S_1|\) return \(S_2\), else return \(S_1\)

Correctness: If \(\text{deg}(v) = 0 \text{ or } 1\) \(|S_2|\) is at most \(|S_1|\), so we’d return \(S_1\) anyway, so does same thing as MIS1

TIME ANALYSIS

- \(T(n)\) is at most \(T(n-1) + T(n-3) + \text{small amount}\)
- Similar to Fibonacci numbers, but a bit better, about \(2^{.6n}\) rather than \(2^{.7n}\).
- \(n=80: 2^{.6n}=2^{48}\), less than a second.
- \(n=100: 2^{60} = 16\) minutes, \(2^{70}=16,000\) minutes
- So while still exponential, big win for moderate \(n\)
I don’t know whether there is any graph where MIS3 is that bad.

- Best known MIS algorithm around $2^{n/4}$, by Robson, building on Tarjan and Trojanowski. Does much more elaborate case analysis for small degree vertices
- Interesting research question: is there a limit to improvements?
- This question= Exponential Time Hypothesis, has interesting ramifications whether true or false
HOW BACKTRACKING HELPS

A?

B?

C?

D?

B?

C?

D?

D?

C?

D?
HOW BACKTRACKING HELPS

ORDER CAN BE ADAPTIVE
WHEN CAN WE PRUNE?

- Basic: when constraints would be violated
- Subtler: when that choice is dominated by another; the other choice is at least as likely to lead to a (good) solution (Need ``modify-the-solution'' argument)
- Branch-and-bound: dynamically track ``best-so-far'' solution. If current path cannot do better (using some function that bounds the achievable best), then we can prune our path.

``SELF-SIMILARITY''?

- Self-similarity: Problem+ choice = smaller problem of same type
- If we have self-similarity, it makes recursion in BT (and hence, DP) very clean.
- But if we don’t have it, we can still use BT (and hence DP)
- Generalize the problem to keep partial solution
- Generalized problem will have self-similarity, original becomes special case
3-COLORING

- Instance: undirected graph G
- Solution format: Give each vertex \(v \) a color \(C(v) \in \{R, G, B\} \)
- Constraint: If \(\{u, v\} \) is an edge, \(C(v) \neq C(u) \)
- Problem: Existence: is there any 3-coloring of \(G \)? (True, False)
- Originally came up in making maps: vertices=countries, colors must be distinct to show borders. Famous 4-color theorem said all planar graphs (including possible maps) can be colored with 4 colors

EXAMPLE

Local decision: What color is A? Possible answers: AAA

![Diagram](image-url)
All answers symmetric, Just pick A

Implications:
- No red B or C
Next: node B
EXAMPLE

- C must be blue

CASE 1: D (CASE 2: D)

- E must be blue
- F must be green
CASE 1: D (CASE 2: D)

- No colors for G,
- Failed search

CASE 2: D

- E must be red
CASE 2: D

- G must be green

CASE 2: D

- F must be red
This approach used partial information about the previous solution to generalize the problem so we could solve it recursively.

- $CL(u)$ = list of possible colors for vertex u. Initially, $CL(u)$ is all three colors, but we'll delete colors as we make recursive calls.

The list 3-coloring problem, $L3C(G,CL)$, adds the constraints that $C(u)$ must be in $CL(u)$.
L3C(G, CL)
- If |V|=0 return True
- If there is any v with |CL(v)|=0 return False
- If there is a v with CL(v)={c}, then:
 - Delete c from CL(u) for each neighbor u of v
 - Return L3C(G-\{v\}, CL)
- If all vertices v have |CL(v)|=3, then pick some v and
 - Delete R from CL(u) for each neighbor u of v
 - Return L3C(G-\{v\}, CL)

Remaining case: the smallest size of CL(u) is 2
- Pick v with CL(v)={c_1, c_2}
- Let CL_1 be CL(u),
 - except that we delete c_1 from CL(u) for neighbors u of v
- Let CL_2 be CL(u),
 - except that we delete c_2 from CL(u) for neighbors u of v
- IF L3C(G-\{v\}, CL_1)= True: return True
- Return L3C(G-\{v\}, CL_2)
BACKTRACKING TIME ANALYSIS

Here, exhaustive search is $O(3^n)$ time, because there are three possible colors per vertex

General way to bound BT algorithms: View recursions as forming tree based on sub-calls

Time = number of leaves

If every node in tree makes at most f = fan-out recursive calls, then

The number of leaves = $O(f^{\text{depth}})$

THIS ALGORITHM

Diagram showing relationships between nodes and sub-calls.
TIME ANALYSIS CONT

- Depth \(\leq n-1 \), because graph decreases every rec. call
- Fan-out = 2, because at most two rec. calls

- So time is \(O(2^n) \)
- Still exponential, but much better than \(3^n \) for moderate sized inputs

TOWARDS DYNAMIC PROGRAMMING

- Dynamic Programming = Backtracking + Memoization
- Memoization = store and re-use, like the Fibonacci algorithm from first class

Two simple ideas, but easy to get confused if you rush:
1. Where is the recursion?
 (It disappears into the memoization, like the Fib. example did.)
2. Have I made a decision?
 (Only temporarily, like BT)

If you don’t rush, a surprisingly powerful and simple algorithm technique.

One of the most useful ideas around
8 QUEENS PUZZLE

- Put 8 queens on a chessboard such that no two are attacking.

- Brute force:
 - Put all possible arrangements of 8 queens on the chess board.

- \(64^8 = \begin{align*}
281474976710656
\end{align*}\)

8 QUEENS: BACKTRACKING

- Like greedy algorithm, break global search into series of local searches
- Unlike greedy algorithm, try all possibilities for local searches.
- Prune solutions as soon as they violate constraints.
- Use constraints to force other searches, or simplify the problem.

https://www.youtube.com/watch?v=V4qSux-M8N4&feature=youtu.be