CSE101: Algorithm Design and Analysis
Russell Impagliazzo
Sanjoy Dasgupta
Ragesh Jaiswal
(Thanks for slides: Miles Jones)

Lecture 24: Divide and Conquer
(Tree and Computational Geometry)
Divide and Conquer Trees

- Let’s say we have a full and balanced binary tree (all parents have two children and all leaves are on the bottom level.)
Divide and Conquer Trees

- Notice that each child’s subtree is half of the problem so we get a nice divide and conquer structure.
Divide and Conquer Trees

• If the tree is uneven, we can still use the same strategy but we need to take a bit of care when calculating runtime.
Least common ancestor

• Given a binary tree with \(n \) vertices, we wish to compute \(LCA(x, y) \) for each pair of vertices \(x, y \).
• \(LCA(x, y) \) is the least common ancestor of \(x \) and \(y \). Or in other words, the “youngest” common ancestor of \(x \) and \(y \).
• For example, the LCA of me and my brother is our parent. The LCA of me and my uncle is my grandparent (his parent.) A vertex can be its own ancestor so the LCA of me and my father is my father.
Least common ancestor

- What pairs of vertices will have the root r as their least common ancestor?
Least common ancestor

• What pairs of vertices will have the root r as their least common ancestor?
• For each vertex v, set $lca(v, r) = r$.
• For each pair of vertices u, v such that u is in the left subtree and v is in the right subtree, set $lca(u, v) = r$.
• Now what? Are we done?
• Recurse on the left and right subtrees!!!!!
Pseudocode

Def LCA(r):
 Lsubtree = explore(r.lc)
 Rsubtree = explore(r.rc)
 for all vertices u in Lsubtree:
 lca(u, r) = r
 for all vertices v in Rsubtree:
 lca(r, v) = r
 for all vertices u in Lsubtree:
 for all vertices v in Rsubtree:
 lca(u, v) = r
 LCA(r.lc)
 LCA(r.rc)
Def LCA(r):
 Lsubtree = explore(r.lc)
 Rsubtree = explore(r.rc)
 for all vertices \(u \) in Lsubtree:
 \(lca(u, r) = r \)
 for all vertices \(v \) in Rsubtree:
 \(lca(r, v) = r \)
 for all vertices \(u \) in Lsubtree:
 for all vertices \(v \) in Rsubtree:
 \(lca(u, v) = r \)
 LCA(r.lc)
 LCA(r.rc)

If the binary tree is balanced, then each recursive call is of size \(\frac{n-1}{2} \) or roughly half.
How long does the non-recursive part take?
Def **LCA**(*r*):

- **Lsubtree** = \texttt{explore}(r.lc)
- **Rsubtree** = \texttt{explore}(r.rc)

\begin{align*}
&\text{for all vertices } u \text{ in } \text{Lsubtree}: \\
&\quad \text{lca}(u, r) = r \\
&\text{for all vertices } v \text{ in } \text{Rsubtree}: \\
&\quad \text{lca}(r, v) = r \\
&\text{for all vertices } u \text{ in } \text{Lsubtree}: \\
&\quad \text{for all vertices } v \text{ in } \text{Rsubtree}: \\
&\quad \text{lca}(u, v) = r
\end{align*}

\text{LCA}(r.lc) \\
\text{LCA}(r.rc)

If the binary tree is balanced, then each recursive call is of size \(\frac{n-1}{2} \) or roughly half.

How long does the non-recursive part take?

\[
T(n) = 2T\left(\frac{n - 1}{2}\right) + O(n^2)
\]

Using the master theorem with \(a=2, b=2, d=2 \),

\[
T(n) = O(n^2)
\]
Pseudocode (runtime uneven)

Def \text{LCA}(r):
\begin{align*}
\text{Lsubtree} &= \text{explore}(r.lc) \\
\text{Rsubtree} &= \text{explore}(r.rc) \\
\text{for} \text{ all vertices } u \text{ in Lsubtree:} & \quad lca(u, r) = r \\
\text{for} \text{ all vertices } v \text{ in Rsubtree:} & \quad lca(r, v) = r \\
\text{for} \text{ all vertices } u \text{ in Lsubtree:} & \quad \text{for} \text{ all vertices } v \text{ in Rsubtree:} & \quad lca(u, v) = r \\
\text{LCA}(r.lc) \\
\text{LCA}(r.rc)
\end{align*}

If the binary tree is uneven then the runtime recurrence is
\[T(n) = T(L) + T(R) + O(LR) \]
Where \(L \) is the size of the left subtree and \(R \) is the size of the right subtree.

What do you think the total runtime will be? Take a guess and we can check it!!!
Uneven DC runtime

• \(T(n) = T(L) + T(R) + O(LR) \)

• We guess that it would take \(O(n^2) \). So let’s try to prove this using induction.

• **Claim:** \(T(n) \leq cn^2 \) for all \(n \geq 1 \) and for some constant \(c \) that is bigger than \(T(1) \) and bigger than the coefficient in the \(O(LR) \) term.
Uneven DC runtime

• Base case. $T(1) < c(1^2)$. True by choice of c.
• Suppose that for some $n > 1$, $T(k) < ck^2$ for all k such that $1 \leq k < n$.
• Then

$$T(n) < T(L) + T(R) + cLR \leq cL^2 + cR^2 + cLR$$
$$< cL^2 + cR^2 + 2cLR = c(L + R)^2 = c(n - 1)^2 < cn^2$$
Make Heap

- Problem: Given a list of n elements, form a heap containing all elements.
Divide and conquer strategy

- Assume $n = 2^k - 1$. (Add blank elements if needed)
- Divide the list into two lists of size $\frac{n-1}{2}$ and a left-over element
- Make heaps with both (in sub-trees of root)
- Put left-over element at root.
- “Trickle down” top element to reinstate heap property
Time analysis

• To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

• $T(n) = T\left(\frac{n}{2}\right) + O()$
Time analysis

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

\[T(n) = 2 \ T\left(\frac{n}{2} \right) + O(\log n) \]

- Doesn’t fit master theorem.
Time analysis: sandwiching

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

- \(T(n) = 2T(\frac{n}{2}) + O(\log n) \)

- Define \(L(n) = 2T(n/2) + O(1) \) and \(H(n) = 2T(n/2) + O(n^{\frac{1}{2}}) \)
- \(L(n) < T(n) < H(n) \)
- Apply Master Theorem: Both \(L(n) \) and \(H(n) \) are \(O(n) \),
- So \(T(n) \) is \(O(n) \)
Given a list of coordinates, \([(x_1, y_1), ..., (x_n, y_n)]\), find the distance between the closest pair.

Brute force solution?

\[
\text{min} = 0 \\
\text{for } i \text{ from } 1 \text{ to } n-1:\n\quad \text{for } j \text{ from } i+1 \text{ to } n:\n\quad \quad \text{if min} > \text{distance}((x_i, y_i), (x_j, y_j))
\]

return min
Example
Example
Divide and conquer

- Partition the points by x, according to whether they are to the left or right of the median
- Recursively find the minimum distance points on the two sides.
- Need to compare to the smallest “cross distance” between a point on the left and a point on the right
- Only need to look at “close” points
• How will we use this information to find the distance of the closest pair in the whole set?
• We must consider if there is a closest pair where one point is in the left half and one is in the right half.
• How do we do this?
• Let $d = \min(d_L, d_R)$ and compare only the points (x_i, y_i) such that $x_m - d \leq x_i$ and $x_i \leq x_m + d$.
Example
Combine

• How will we use this information to find the distance of the closest pair in the whole set?
• We must consider if there is a closest pair where one point is in the left half and one is in the right half.
• How do we do this?
 • Let $d = \min(d_L, d_R)$ and compare only the points (x_i, y_i) such that $x_m - d \leq x_i$ and $x_i \leq x_m + d$.

• Worst case, how many points could this be?
Combine step

- Given a point \((x, y) \in P_m\), let's look in a \(2d \times d\) rectangle with that point at its upper boundary:

- There could not be more than 8 points total because if we divide the rectangle into \(8 \frac{d}{2} \times \frac{d}{2}\) squares then there can never be more than one point per square.
- Why???
Combine step

- So instead of comparing \((x, y)\) with every other point in \(P_m\) we only have to compare it with at most a constant \(c\) points lower than it (smaller \(y\)).
- To gain quick access to these points, let’s sort the points in \(P_m\) by \(y\) values.
- The points above must be in the \(c\) points before our current point in this sorted list.

- Now, if there are \(k\) vertices in \(P_m\) we have to sort the vertices in \(O(k \log k)\) time and make at most \(ck\) comparisons in \(O(k)\) time for a total combine step of \(O(k \log k)\).

- But we said in the worst case, there are \(n\) vertices in \(P_m\) and so worst case, the combine step takes \(O(n \log n)\) time.
Time analysis

- But we said in the worst case, there are n vertices in P_m and so worst case, the combine step takes $O(n \log n)$ time.

- Runtime recursion:

 $$T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n)$$

 This is $T(n) = O(n (\log n)^2)$

Pre-processing: Sort by both x and y, keep pointers between sorted lists. Maintain sorting in recursive calls reduces to $T(n) = 2T(n/2) + O(n)$, so $T(n)$ is $O(n \log n)$