CSE101: Discussion #04
Agenda

1. Diversity, Equity, and Inclusion: Today’s Guest
2. Review:
 a. Priority Queues
 b. Heaps
3. Discussion Problem
Today’s Guest: Héctor García-Molina

DR. HÉCTOR GARCÍA MOLINA
—
1954 – 2019

- Born in Monterrey, Nuevo León, Mexico in 1954
- Studied E.E. at Monterrey Institute of Technology and Higher Studies
- Chairman of Stanford Computer Science Department
DR. HÉCTOR GARCÍA MOLINA

—

1954 – 2019
Today’s Guest: Héctor García-Molina

Dr. Héctor García Molina
1954 – 2019
Priority Queues: What are they?

Priority Queue is a data structure which stores a collection of items (priority, info)

1. **Priority**: a.k.a. “Keys” are arbitrary objects on which an order is defined i.e. a total order relation exists (ex. A, B, C or Red, Blue, Green, or 1, 2, 3)
2. **Non-unique priorities/keys**: Multiple items can have same priority/key
Priority Queues: Types?

Priority Queues can be implemented in many ways (including):

1. **Array**: sorted or unsorted
2. **Linked List**: ordered or unordered
3. **Binary Search Tree**
4. **Binary Heap**: (to be discussed later)
Priority Queues: What operations?

Priority Queue supports:

1. **Add**: add item (priority, info) to queue with specified priority/key and info
2. **Peek Max/Min**: find item in queue with min/max priority
3. **Remove Max/Min**: remove item in queue with min/max priority
Priority Queues: Operation run-times?

Priority Queue supports:

1. **Add**: add item (priority, info) to queue with specified priority/key and info
2. **Peek Max/Min**: find item in queue with min/max priority
3. **Remove Max/Min**: remove item in queue with min/max priority

<table>
<thead>
<tr>
<th></th>
<th>Unordered Array</th>
<th>Sorted Array</th>
<th>Unordered Linked List</th>
<th>Sorted Linked List</th>
<th>Binary Search Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(\log N)^*$</td>
</tr>
<tr>
<td>peekMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
</tr>
<tr>
<td>removeMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
</tr>
</tbody>
</table>

* The BST efficiencies assume a balanced tree, which is not guaranteed. Actual efficiencies may be worse than stated.
Priority Queues: Operation run-times?

Priority Queue supports:

1. **Add**: add item (priority, info) to queue with specified priority/key and info
2. **Peek Max/Min**: find item in queue with min/max priority
3. **Remove Max/Min**: remove item in queue with min/max priority

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unordered Array</th>
<th>Sorted Array</th>
<th>Unordered Linked List</th>
<th>Sorted Linked List</th>
<th>Binary Search Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(\log N)^*$</td>
</tr>
<tr>
<td>peekMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
</tr>
<tr>
<td>removeMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
</tr>
</tbody>
</table>

The BST efficiencies assume a balanced tree, which is not guaranteed. Actual efficiencies may be worse than stated.

Can we do better?
Heaps: What are they?

Binary Heap is a Binary Tree (but not a Binary Search Tree) that satisfies:

1. **Complete**: A “complete” binary tree is a tree where every level except the last one is completely filled, and the last level has all leaves as far left as possible.
Heaps: What are they?

Binary Heap is a Binary Tree (but not a Binary Search Tree) that satisfies:

1. **Complete**: A “complete” binary tree is a tree where every level except the last one is completely filled, and the last level has all leaves as far left as possible.
Heaps: What are they?

Binary Heap is a Binary Tree (but not a Binary Search Tree) that satisfies:

1. **Complete**: A “complete” binary tree is a tree where every level except the last one is completely filled, and the last level has all leaves as far left as possible.
 a. **Depth of a node**: # of edges from the root to the node.
 b. **Height of a node**: # of edges from the node to the deepest leaf
 c. **Height of a tree**: = height of the root
 (see above: # of edges from the node to the deepest leaf)
Heaps: What are they?

Binary Heap is a Binary Tree (but not a Binary Search Tree) that satisfies:

1. **Complete**: A “complete” binary tree is a tree where every level except the last one is completely filled, and the last level has all leaves as far left as possible.
2. **Order**: For every internal node \(n \) i.e. not the root:
 a. **Max Heap**: \(\text{key}(\text{parent}(n)) \geq \text{key}(n) \) i.e. value at any node is **at most** the value of its parent
 b. **Min Heap**: \(\text{key}(\text{parent}(n)) \leq \text{key}(n) \) i.e. value at any node is **at least** the value of its parent
Heaps: What are they?

Binary Heap is a Binary Tree (but not a Binary Search Tree) that satisfies:

1. **Complete**: A “complete” binary tree is a tree where every level except the last one is completely filled, and the last level has all leaves as far left as possible.
2. **Order**: For every internal node (n) i.e. not the root:
 a. **Max Heap**: $\text{key(parent(n))} \geq \text{key(n)}$ i.e. value at any node is **at most** the value of its parent
 b. **Min Heap**: $\text{key(parent(n))} \leq \text{key(n)}$ i.e. value at any node is **at least** the value of its parent
Heaps: What operations?

Binary Heap supports:

1. **Add**: add a node to the heap
2. **“Heapify”**: after changing heap, ensure satisfies heap properties (see above: completeness and order)
3. **Peek Max/Min**: find largest or smallest node in heap
4. **Remove Max/Min**: remove largest or smallest node in heap
Heaps: Operation run-times?

Binary Heap supports:

1. **Add**: add a node to the heap $O(1)$
2. **“Heapify”**: after changing heap, ensure satisfies heap properties (see above: completeness and order) $O(\log N)$
3. **Peek Max/Min**: find largest or smallest node in heap $O(1)$
4. **Remove Max/Min**: remove largest or smallest node in heap $O(\log N)$

<table>
<thead>
<tr>
<th></th>
<th>Unordered Array</th>
<th>Sorted Array</th>
<th>Unordered Linked List</th>
<th>Sorted Linked List</th>
<th>Binary Search Tree</th>
<th>Binary Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(\log N)^*$</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>peekMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>removeMax</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(\log N)^*$</td>
<td>$O(\log N)$</td>
</tr>
</tbody>
</table>

* The BST efficiencies assume a balanced tree, which is not guaranteed. Actual efficiencies may be worse than stated.
Discussion Problem
CSE 101 Discussion 4

Part 2
Problem statement

Given: a max-heap containing n elements, and a positive integer k.
Want: the kth largest element of the heap.

Heap operations

- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$

Given: $k = 4$: outputs 4

Naive: call removeMax k times
Heap has n elements, so $O(k \log n)$
inefficient if $n \approx k$ (large heaps)
Problem statement

Given: a max-heap containing n elements, and a positive integer k.
Want: the kth largest element of the heap.

$k = 4$: outputs 4

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Given: a max-heap containing n elements, and a positive integer k. Want: the kth largest element of the heap.

Naive: call removeMax k times
heap has n elements, so $O(k \log n)$

$k = 4$: outputs 4
Problem statement

Given: a max-heap containing n elements, and a positive integer k.
Want: the kth largest element of the heap.

Naive: call removeMax k times
heap has n elements, so $O(k \log n)$
inefficient if $n \gg k$ (large heaps)

$k = 4$: outputs 4

Heap operations
add: $O(\log n)$
peekMax: $O(1)$
removeMax: $O(\log n)$
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Heap operations

- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Idea: Keep an updating list of candidates for \(k \)th largest element by looking at children.

Heap operations
- add: \(O(\log n) \)
- peekMax: \(O(1) \)
- removeMax: \(O(\log n) \)
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Idea: Keep an updating list of candidates for kth largest element by looking at children.
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Idea: Keep an updating list of *candidates* for *k*th largest element by looking at children.

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Idea: Keep an updating list of candidates for kth largest element by looking at children.

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Leave input heap unchanged?

We know that the value of any node is at most the value of its parent.

Idea: Keep an updating list of *candidates* for kth largest element by looking at children.

We can use a new max-heap to keep track of these candidates (a priority queue also works)
What would this look like?

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$

Input heap, $k = 4$

New heap
Heap operations
add: $O(\log n)$
peekMax: $O(1)$
removeMax: $O(\log n)$

Input heap, $k = 4$

New heap
What would this look like?

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$

Input heap, $k = 4$

New heap
What would this look like?

Input heap, $k = 4$

New heap

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
What would this look like?

Heap operations
add: $O(\log n)$
peekMax: $O(1)$
removeMax: $O(\log n)$

Input heap, $k = 4$

New heap
What would this look like?

Heap operations
add: $O(\log n)$
peekMax: $O(1)$
removeMax: $O(\log n)$

Input heap, $k = 4$

New heap
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.

Heap operations

- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps $(k - 1)$ times:

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$

Runtime analysis
- Maximum size of our new heap: each loop iteration removes 1, adds at most 2
- Heap operations now take $O(\log k)$ so total runtime: $O(k \log k)$
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps $(k - 1)$ times:
 - Remove the maximum element of our new heap. Call it max.
 - Copy over max's 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap).
 - Remove the maximum element of our heap one more time, and return that element.

Runtime analysis
Maximum size of our new heap: each loop iteration removes 1, adds at most 2
Heap operations now take $O(\log k)$ so total runtime: $O(k \log k)$

Heap operations
 - add: $O(\log n)$
 - peekMax: $O(1)$
 - removeMax: $O(\log n)$
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps ($k - 1$) times:
 - Remove the maximum element of our new heap. Call it max.
 - Copy over max’s 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap).

Heap operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>peekMax</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>removeMax</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps ($k - 1$) times:
 - Remove the maximum element of our new heap. Call it max.
 - Copy over max’s 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap)
- Remove the maximum element of our heap one more time, and return that element.

Heap operations

- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps ($k - 1$) times:
 - Remove the maximum element of our new heap. Call it max.
 - Copy over max’s 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap)
- Remove the maximum element of our heap one more time, and return that element.

Runtime analysis Maximum size of our new heap:

Heap operations
- add: $O(\log n)$
- peekMax: $O(1)$
- removeMax: $O(\log n)$
Our algorithm

Given: input heap, an integer k
Returns: kth largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps $(k - 1)$ times:
 - Remove the maximum element of our new heap. Call it max.
 - Copy over max’s 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap)
- Remove the maximum element of our heap one more time, and return that element.

Runtime analysis Maximum size of our new heap: each loop iteration removes 1, adds at most 2 $\rightarrow O(k)$
Our algorithm

Given: input heap, an integer \(k \)
Returns: \(k \)th largest element of input heap

- Create a new heap. Copy over the root value of the input heap to the new heap.
- Repeat the following steps \((k - 1) \) times:
 - Remove the maximum element of our new heap. Call it \(\text{max} \).
 - Copy over \(\text{max} \)'s 2 children from the input heap, and add them both to our new heap (we can find these by keeping and incrementing pointers to the input heap)
- Remove the maximum element of our heap one more time, and return that element.

Runtime analysis

Maximum size of our new heap:
each loop iteration removes 1, adds at most 2 \(\rightarrow O(k) \)
heap operations now take \(O(\log k) \) so total runtime: \(O(k \log k) \)

Heap operations
add: \(O(\log n) \)
peekMax: \(O(1) \)
removeMax: \(O(\log n) \)