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Molecular Modeling 

• Molecular modeling is a fairly mature field having 
evolved over more than fifty years 

• Modern techniques are able to model complex 
interactions between mega-molecules such as 
proteins 

• They can also predict properties of novel 
molecules and macroscopic properties of novel 
materials 

• They are also used as a tool in modern medical 
engineering, genetics, and pharmaceutical design 



Molecular Modeling 

• Broadly speaking, molecular modeling can be divided into two main 
approaches: 
– Molecular Dynamics (MD): each atom is treated as a Newtonian 

particle and interatomic forces are based on various models 
– Quantum Modeling: electron wave equations are computed based on 

Schrödinger equation and used to predict properties of molecules 

• The MD method is used for larger scale simulations of molecules 
interacting over time, and typically don’t involve any real chemical 
interactions or bond forming/breaking 

• Quantum methods are very slow and complex but much more 
general and able to predict a wide variety of chemical properties 

• The two methods can also be hybridized- for example, a drug 
interacting with a protein might be primarily simulated with MD but 
use quantum mechanics to model the up close interactions at the 
reaction site 



Molecular Dynamics 



Molecular Dynamics 

• Molecular dynamics (MD) treats individual atoms as 
Newtonian point masses and interactions between atoms 
as various force models 

• At a minimum, the forces include 
– Covalent bonds 
– Angular bonds 
– Torsional bonds 
– Van-der-Waals forces 
– Coulomb forces 

• In general, MD does not model any chemical interactions, 
so no bonds are formed or broken 

• Also, gravity is usually ignored, as it is very weak at the time 
scales involved 



Molecular Dynamics 

Image: Ed Hutchinson/University of Glasgow 



Atoms 

• Individual atoms are treated as point masses 
• An atom has an integer atomic number, which is 

the number of protons, and serves to identify the 
type (hydrogen, carbon, gold, etc.) 

• It also has an integer number of neutrons, which 
can vary for different isotopes of the atom 

• It will also have an atomic mass, based on the 
number of protons and neutrons 

• The masses and isotope information can be found 
in a good periodic table or chemistry reference 



Force Computation 

• As with other simulation methods, we just sum up the 
forces on the particles 

• In some cases, forces are defined in terms of the total 
potential energy function 
 

𝑈 𝐫1, 𝐫2, … 𝐫𝑛  
 
• Where the forces on each particle are defined as the 

negative spatial gradient of the potential function 
 

𝐟𝑖 = −
𝜕𝑈

𝜕𝐫𝑖
 



Covalent Bonds 

• A covalent bond between two atoms (whether a single, 
double, or triple bond) is modeled essentially as a 
spring between the two atoms 

• At a minimum, it would have a rest length (average 
bond length) and a spring constant 

• More complex models can use nonlinear functions for 
the force-distance relationship 

• The values of the constants in these will vary based on 
the type of the two atoms being bonded (H-H will have 
different constants from H-C, etc.) and these are 
usually just specified in lookup tables 



Angular Bonds 

• The term ‘angular bond’ refers to a force that 
acts on the angle between two bonded atoms 

• For example, consider a water molecule H2O 
where the average angle between the two 
hydrogen atoms is 104.5 degrees 

• We use an angular bond to enforce this 



Torsional Bonds 

• A ‘torsional bond’ is a hypothetical force that 
acts against twisting along an axis connecting 
two atoms 

• It operates on the axis in the middle of a chain 
of 4 molecules 



Bond Geometry 

𝐼𝑚𝑎𝑔𝑒: "𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 
 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝑆𝑖𝑚𝑢𝑎𝑙𝑡𝑖𝑜𝑛",𝑀𝑖𝑐ℎ𝑎𝑒𝑙 𝑃.  𝐴𝑙𝑙𝑒𝑛 



Bond Force Model 

• A basic bond force potential model that includes covalent, angular, 
and torsional components is: 
 

       𝑈𝑏𝑜𝑛𝑑 =
1

2
 𝑘𝑟𝑖𝑗𝑏𝑜𝑛𝑑𝑠 𝑟𝑖𝑗 − 𝑟𝑒𝑞

2
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 𝑘𝜃𝑖𝑗𝑘𝑏𝑒𝑛𝑑
𝑎𝑛𝑔𝑙𝑒𝑠

𝜃𝑖𝑗𝑘 − 𝜃𝑒𝑞
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  𝑘𝜑𝑚𝑖𝑗𝑘𝑙

1 + cos 𝑚𝜑𝑖𝑗𝑘𝑙 − 𝛾𝑚𝑚𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑎𝑛𝑔𝑙𝑒𝑠

 

 
• This requires lots of constants that have to be fit to experimental 

data 



Coulomb Force 

• The Coulomb force is the force due to the electrostatic 
attraction/repulsion between two atoms 
 

𝐟𝑐𝑜𝑢𝑙𝑜𝑚𝑏 =
1

4𝜋𝜀0

𝑞1𝑞2
𝑟2
𝐞 

 
• Where 𝑞1 and 𝑞1 are the electrostatic charges, 𝑟 is the distance 

between the atoms, and 𝐞 is a unit vector from atom 1 to 2 
• Most atoms in molecules are roughly neutral, but some will have a 

slight charge due to ionization or irregular distribution of electrons 
• The Coulomb force acts between every pair of atoms, but it usually 

ignored for bonded pairs 



Van der Waals Forces 

• The van der Waals force is an interaction between pairs of 
nearby atoms 

• When atoms are nearby, the force causes a slight attraction 
• When they get very close, the force switches to a strong 

repulsion and prevents the atoms from getting too close 
• The full force is quite complex, and is often simplified with 

a model along the lines of: 
 

𝐟𝑣𝑑𝑤 =
𝐶1
𝑟13
−
𝐶2
𝑟7
𝐞 

 
• Where 𝐶1 and 𝐶2 can be fit to experimental data 

 
 



Periodic Domains 

• Most molecular dynamics interactions of interest happen within 
gasses, liquids, or solids 

• To account for the properties of large scale fluids and solids, most 
molecular dynamics simulations take place in a periodic domain 

• Typically, the simulation is limited to a rectangular box that is meant 
to repeat effectively infinitely in each direction 

• When an individual atom passes the +x boundary, for example, it 
wraps around to the –x boundary 

• Molecular interaction forces have to take the tiling space into 
consideration. For example, if an H2 molecule is sitting on the x 
boundary, one of the hydrogen atoms will be on the far right of the 
domain and the other will be on the far left. The bond analysis code 
has to normalize them into the same space 



Force Octrees 

• Covalent bond forces are explicitly identified at 
the start of the simulation and operate between 
specific pairs (or triplets/quads) of atoms 

• Coulomb and van der Waals forces however, 
operate between all pairs of atoms which leads to 
n2 computational time 

• The octree methods we used to optimize galactic 
simulations can also be adapted to optimize 
these forces and can also be adapted to the tiling 
space 



Integration 

• It is common to use the variation of forward Euler that we 
previously looked at, using the new velocity to advance the 
time instead of the previous velocity 
 

𝐯𝑖+1 = 𝐯𝑖 + 𝐚𝑖∆𝑡 
𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡 

 
• This goes by many different names in literature including 

semi-implicit Euler, Euler-Cromer, symplectic Euler, 
Størmer-Verlet, and leapfrog, depending on the context 

• It is simple and reasonably good at preserving energy in this 
type of problem 

• The time step is usually around 1 fs (1x10-15 s) 
 



Temperature Control 

• The integration method will guarantee conservation of 
momentum, but will only approximately conserve 
energy 

• In order to enforce conservation of energy, we can use 
an artificial ‘thermostat’, which allows us to set the 
average kinetic energy (temperature) to any value we 
want by just scaling all particle velocities slightly up or 
down until we reach the temperature we want 

• This temperature control also allows us to simulate the 
effects of external heating or cooling by raising or 
lowering the thermostat 



Water Solutions 

• Many molecular interactions of interest take 
place in water 

• Water is quite complex, as the hydrogen bonding 
has a significant effect on the behavior 

• There are two common options for modeling the 
surrounding water solution 
– Explicitly model it with a bunch of water molecules 

(slower, more accurate) 
– Implicit model that applies the average effects of the 

water solution to boundaries of other molecules 
(faster, less accurate) 



Force Field Definitions 

• There are many standard force field definitions 
that contain sets of force constants for numerous 
types of chemical bonds 

• Some of the main ones are AMBER, CHARMM, 
GAFF, MMFF, and UFF, and each of these has 
multiple variants tuned for specific molecules and 
specific applications 

• There are also many commercial packages that 
implement one or more of these force fields 
along with various other tools and user interfaces 



Quantum Modeling 



Quantum Mechanics 

• If we want to do serious molecular modeling, we can simulate 
molecules at the quantum level 

• Quantum simulations compute the wave functions of the electrons 
in a molecule, allowing for computation of more fundamental 
properties 

• For example, one can do things like: 
– Predict the shape of a molecule from its atomic formula (including 

distances between atoms and bond angles) 
– Compute the electrostatic charge distribution of a molecule 
– Compute the energy levels of base and excited states 
– Estimate the color (absorption spectrum) and other optical scattering 

properties  
– Predict chemical interactions 
– Compute constants used in MD simulations (rest lengths, bond 

stiffness, angles…) 



Finite Dimensional Real Vector Spaces 

• We’ve done lots of work with real valued finite dimensional vector spaces, 
such as the space of 3D vectors 

• A vector in n-dimensional space is written as: 
 

𝐚 =

𝑎1
𝑎2
⋮
𝑎𝑛

= 𝑎1 𝑎2 ⋯ 𝑎𝑛 𝑇 

 
• And the dot product of vectors 𝐚 and 𝐛 is: 

 

𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑖

𝑛

𝑖=1

= 𝑎1 𝑎2 ⋯ 𝑎𝑛

𝑏1
𝑏2
⋮
𝑏𝑛

= 𝐚𝑇𝐛 

 



Complex Vector Spaces 

• If we extend this to allow the components of the vector to be complex 
numbers, we have a complex vector space 

• If we also extend this to allow n to be infinity, we have an infinite 
dimensional vector space 

• We can introduce the Dirac notation (also called bra-ket notation) for this 
• A vector in this notation is written as: 

 

|𝑎 = 𝐚 =

𝑎1
𝑎2
⋮
𝑎𝑛

=

𝑎1𝑟 + 𝑖𝑎1𝑖
𝑎2𝑟 + 𝑖𝑎2𝑖
⋮

𝑎𝑛𝑟 + 𝑖𝑎𝑛𝑖

 

 
• Where each value has a real and imaginary component and 𝑛 is allowed to 

be infinity 



Infinite Dimensional Spaces 

• Infinite dimensional spaces are actually not that weird 
• Consider some function f(x) 
• We can sample it at 3 points and represent an approximation of the function as a 

3D vector 
• We could increase the number of samples to 100 and sample a wider range of the 

function at a higher density and represent it with a 100D vector 
• We could just keep going and sample the function at an infinite number of places 

and represent it as an infinite dimensional vector 
• Instead of representing the individual dimensions with a positive integer 1, 2, 3, …, 
∞, we instead represent them with a real number 𝑥 [−∞,∞]. Either way, we have 
an infinite number of values to work with 

• An infinite dimensional vector is just another way of thinking of a function. In fact, 
we don’t have to limit it to a 1D function. Any n-dimensional function could be 
represented as an ∞D vector 
 

|𝑎 ≡ 𝑎 𝑥  



Vector Adjoint 

• If we have a complex number 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖, we 
define the complex conjugate 𝑐∗ as: 
 

𝑐∗ = 𝑐𝑟 − 𝑖𝑐𝑖 
 

• We can define the vector conjugate as the vector 
of conjugates, and the adjoint ‡ as the transpose 
of the vector conjugate: 
 
 𝑎| = |𝑎 ‡ = 𝑎1

∗ 𝑎2
∗ ⋯ 𝑎𝑛

∗  



Dot Product 

• In Dirac notation, the dot product equivalent is defined as: 
 

 𝑎|𝑏 =  𝑎| ⋅ |𝑏 = 𝐚‡𝐛 = 𝑎𝑖
∗𝑏𝑖

𝑛

𝑖=1

 

 
• If we assume 𝑛 is infinite, we can replace the summation 

with an integral: 
 

 𝑎|𝑏 =  𝑎∗ 𝑥 𝑏 𝑥 𝑑𝑥 



Unit Vectors and Normalized Functions 

• Just as we can compute the squared magnitude of a vector as 𝐚 ⋅ 𝐚, 
we can compute the squared magnitude of infinite dimensional 
vector as: 
 

𝑎 2 =  𝑎|𝑎 =  𝑎∗ 𝑥 𝑎 𝑥 𝑑𝑥 

 
• If 𝑎 𝑥  is normalized, then  𝑎|𝑎 = 1  
• This gives us a method for normalizing a ∞D vector: 

 

normalize(𝑎) =
|𝑎 

 𝑎|𝑎 
 

 



Orthonormal Bases 

• We can construct an orthonormal basis in 3D space by defining 3 vectors 
𝐞1, 𝐞2, and 𝐞3 such that: 
 

 𝐞𝑖 ⋅ 𝐞𝑖 = 1 

 𝐞𝑖 ⋅ 𝐞𝑗 = 0, for 𝑖 ≠ 𝑗 
 

• We can also write this as 
 

 𝐞𝑖 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗 
 

• Where 𝛿𝑖𝑗 is the Kronecker delta: 
 

 𝛿𝑖𝑗 =  
0  if 𝑖 ≠ 𝑗
1 if 𝑖 = 𝑗

 

 
 



Orthonormal Bases 

• We can also have an orthonormal basis in 
infinite dimensional complex vector spaces 

• We can define an set of basis vectors 𝐞1…𝐞𝑛 
where 𝑛 can be a finite or infinite 

 

𝑒𝑖|𝑒𝑗 = 𝛿𝑖𝑗 

 



Operations 

• We can take a vector and multiply it by a matrix to produce 
a new vector 

 
𝐛 = 𝐌𝐚 

 
• In a sense, we are performing an operation on the vector, 

and in particular, it is a linear operation 
• We can generalize this into infinite dimensional space and 

define an operator 𝒪 on a vector producing a new vector 
as: 
 

|𝑏 = 𝒪|𝑎  



Eigenfunctions 

• With finite dimensional vectors, we have the familiar eigenvalue 
equation: 

𝐌𝐱 = 𝜆𝐱 
 
• Given matrix 𝐌, we wish to find orthonormal eigenvectors 𝐱𝑖 that 

when transformed by 𝐌, result in a vector lining up with the 
original vector, but scaled by eigenvalue 𝜆𝑖 
 

• With infinite dimensional vectors, we have a similar equation: 
 

𝒪|𝑎 = 𝑘|𝑎  
 

• Given an operator 𝒪, we wish to find the orthonormal 
eigenfunctions |𝑎𝑖  as well as their associated eigenvalues 𝑘𝑖 



Schrödinger Equation 

• The time-independent form of the Schrödinger 
equation is: 

 
ℋ|𝜓 = ℰ|𝜓  

 

• Where 𝜓 is a wavefunction, ℋ is the Hamiltonian 
operator, and ℰ is the (scalar) energy 

• It is an eigenfunction equation that describes the 
properties of quantum wavefunctions 



Wavefunctions 

• The function |𝜓  refers to the spatial wavefunction of the particles 
concerned 

• The wavefunction is a single infinite dimensional vector, but for a 
particle, it can be thought of as a density function in 3D space 

• Technically, it’s a probability function, but we can really just think of 
the particle as being smeared out by this function 

• If the wavefunction represents a single electron, the negative 
electric charge is not concentrated at a single point, but is 
distributed spatially by the wavefunction 

• If two particles are interacting, we can use a single 6D 
wavefunction, where the first 3 dimensions are used to represent 
the first particle and the next 3 are for the second particle 

• In this way, we can have n particles interacting all represented by a 
single wavefunction 



Born-Oppenheimer 

• The mass of a single proton is 1837 times the mass of an 
electron (neutrons are about the same as protons) 

• All of the protons and neutrons of an atom pack into a tiny 
space in the nucleus 

• For these reasons, we can treat the entire nucleus of each 
atom as a 0-dimensional point with a charge equal to the 
number of protons 

• Quantum molecular modeling treats the electrons as wave 
functions, but simplifies the protons and neutrons together 
as point charges 

• This is known as the Born-Oppenheimer approximation 
• This leads to a small quantifiable error on the order of 1% 

in most cases 



Hydrogen Hamiltonian 

• In the ℋ 𝜓 = ℰ 𝜓  we have the Hamiltonian operator ℋ, the 
wavefunction |𝜓 , and the scalar energy ℰ 

• If we are modeling hydrogen and using the Born-Oppenheimer 
approximation for the proton, then the wavefunction only needs to 
describe the single electron 

• The Hamiltonian defines the inherent behavior of the electron combined 
with the attraction to the proton 

• For hydrogen, we have a single electron interacting with a single proton 
(fixed at the origin) resulting in the Hamiltonian: 

 

ℋ = −
1

2
∇2 −
1

𝑟
 

 
• Note: In atomic units, most of the constants (speed of light, electric 

constant, elementary charge) are 1.0, so this equation looks clean 
 



Hydrogen Atom 

ℋ 𝜓 = ℰ 𝜓  
 

ℋ = −
1

2
𝛻2 −
1

𝑟
 

 
• If we write the wavefunction |𝜓  as a function of in 3D space 𝜓 𝐱 , we can 

re-write this as: 
 

−
1

2
𝛻2𝜓 𝐱 −

𝜓 𝐱

𝑟
= ℰ𝜓 𝐱  

 
• Which is a messy spatial differential equation that relates a function 𝜓 𝐱  

with its Laplacian 𝛻2𝜓 𝐱  
• Remarkably, there is an exact solution, but it is not simple 



Hydrogen Atom 

• If we use the time independent form of the 
Schrödinger equation and we treat the proton at the 
center as a fixed point, we can calculate an exact 
solution to the eigenfunction equation 

• This gives us a set of electron wavefunctions 
corresponding to quantum energy levels (eigenvalues) 

• For hydrogen, we can compute these analytically with 
a combination of factorials, Leguerre polynomials, and 
Legandre polynomials 

• These lead to the 1s, 2s, 2p, 3s, 3p, 3d… orbitals that 
are typically taught in chemistry classes 





Hartree-Fock Method 



Molecular Hamiltonians 

• For multiple electrons interacting around multiple atomic 
nuclei: 
 

ℋ = − 
1

2
𝛻𝑖
2

𝑛

𝑖=1

−  
𝑍𝐴
𝑟𝑖𝐴

𝑚

𝐴=1

𝑛

𝑖=1

+  
1

𝑟𝑖𝑗

𝑛

𝑗>𝑖

𝑛

𝑖=1

 

 
• The first term is the Laplacian term, which is fundamental 

to the physics of particles 
• The second term is the Coulomb repulsion between 

electron 𝑖 and atomic nucleus 𝐴 with charge 𝑍𝐴 and at 
distance 𝑟𝑖𝐴 

• The third term is the Coulomb repulsion between electron 𝑖 
and electron 𝑗 



Pauli Exclusion Principle 

• In larger atoms or molecules, more than one 
electron is involved 

• The Pauli exclusion principle prevents multiple 
particles form having the same state means that 
the electrons will occupy different energy levels 

• In the rest state of a molecule with n electrons, 
the lowest n levels will be occupied 

• As they are eigenfunctions, the electrons will be 
orthogonal to each other, i.e.,  𝑎|𝑏 = 0 



Hartree-Fock Equation 

• The Hartree-Fock equation is a complex integral-
differential equation that can be used to compute 
approximations to solutions of the molecular 
Schrödinger equation 

• The quantum modeling method that uses this equation 
is known as the Hartree-Fock method (HF) 

• The method dates back to the early 1930’s 

• It can be used to calculate properties of very basic 
molecules (like H2) on paper, but the calculations grow 
quite substantial for anything more complex, requiring 
computers 



Hartree-Fock Method 

• The only input required for the HF method is a 
set of atomic nuclei, with given integer charges 
and 3D vector locations 

• The masses are assumed infinite relative to the 
electrons, so aren’t used in the calculations 
(Born-Oppenheimer approximation) 

• The output is a set of approximate electron 
wavefunctions as well as the energy levels 
associated with each electron 



Hartree-Fock Method 

• A single run of the HF method takes atomic nuclei 
as input and computes electrons as output 

• This information can be used to compute various 
other data such as ionization energies, 
electrostatic potentials, electron densities, bond 
strengths, absorption spectra, and more 

• By iteratively running the HF method, one can 
compute energy minimizations used to predict 
geometric properties of molecules, such as bond 
angles and lengths 



Hartree-Fock Method 

• As the calculations are performed in atomic units, most 
of the relevant constants are 1.0 

• The method does not require any additional constants 
or tuning parameters 

• In other words, it can hypothetically compute the 
properties of the entire periodic table and of any 
molecule completely from scratch without any magic 
numbers 

• In practice, however, it has its limits due to the 
required computational performance and the 
limitations of the way it approximates wavefunctions 
with a set of basis functions 



Basis Functions 

• The HF method makes certain assumptions about the 
electrons in order to make the problem tractable 

• One main assumption it makes is that the shape of the 
molecular electron orbitals will be similar to the shape of 
atomic orbitals 

• It further assumes that an electron orbital will resemble a 
linear combination of the basic hydrogen-like orbitals 

• To simplify calculations, these hydrogen-like orbitals are 
themselves approximated with a summation of Gaussian 
functions 

• These component functions that resemble hydrogen 
orbitals are known as basis functions 



Basis Functions 

• The idea behind basis functions is that we can represent a 
3D field as a weighted summation of these basis functions 
 

𝑓 𝐱 ≈ 𝑤𝑖𝐵𝑖 𝐱

𝑛

𝑖=1

 

 
• Where 𝑓 𝐱  is the function we wish to approximate, 𝑤𝑖 is a 

set of 𝑛 weights, and 𝐵𝑖 𝐱  is a set of 𝑛 basis functions 
• We pre-select the basis functions based on how we expect 

the function to look 
• We then wish to solve the set of 𝑤𝑖 weights that provide 

the best fit to the function 



Basis Functions 

• If we are modeling a water molecule, for 
example, we know that we will need 10 electrons 
around 3 atomic nuclei 

• Each electron wavefunction may have properties 
of the lowest 10 energy states of hydrogen, which 
includes s-type and p-type orbitals 

• We therefore choose a set of basis functions that 
include s-type and p-type shapes to work with 



Hartree-Fock Method 

• The HF method iteratively computes a set of weights 
for the basis functions 

• Ultimately, it will find the best set of weights to 
represent the full set of electrons in the molecule 

• The quality of the solution is therefore highly 
dependent on the selection of the basis functions and 
their ability to accurately model the correct solution 

• One can use a larger number of basis functions in 
hopes to improve the accuracy of the solution 

• Unfortunately, the performance of the HF method is 
proportional to O(n4) where n is the total number of 
basis functions in the molecule 



Basis Functions vs. Grids, etc. 

• We’ve seen many methods for representing fields in this 
course, such as grids, irregular meshes, hierarchical grids, 
and particles 

• Basis functions are yet another method of doing this 
• The grid/particle methods are great for representing 

arbitrary functions, but they require lots of variables 
• Basis functions are much more limited and require 

choosing basis functions that can express the possible fields 
• Their advantage is that they require much fewer variables 

than grid/particle methods 
• Actually, all methods can be thought of as basis function 

methods, since particles are just small round basis 
functions, and grid cells are small square ones! 



Density Functional Theory 

• Density functional theory (DFT) refers to a 
alternative quantum modeling method from the 
Hartree-Fock method 

• It has advantages and disadvantages, but one 
particular advantage is that it handles tiling 
domains well 

• This makes it very effective for modeling crystals 
and novel materials 

• DFT and HF are two of the main methods used in 
quantum level molecular modeling today 



Reference 

• “Modern Quantum Chemistry”, 
Szabo, Ostlund, 1982 (revised 
1989) 

• Excellent book on applied 
quantum modeling 

 



Multi-Scale Modeling 

• We can use different physical models at different scales to perform 
multi-scale simulations 

• For example, we can design new materials at the molecular scale 
• We can use quantum modeling to study the molecules and 

compute bond and other properties that can be fed into a 
molecular dynamics simulation 

• We can then model larger scale structures of how the molecules 
form a continuous material. Once we can do this, we can compute 
elasticity properties of the material by applying a strain to the MD 
simulation and computing and tabling the resulting stress. We can 
also model plasticity and other properties at the MD level to 
compute material parameters to use in a finite element simulation 

• At this stage, we can do finite element simulations of macroscopic 
objects modeled with our new material 

• This type of multi-scale modeling can also apply to visual properties 


