
Galactic Dynamics

Steve Rotenberg
CSE291: Physics Simulation

UCSD
Spring 2019

Gravitational Simulations

• Gravity alone can model several interesting
systems such as:
– Planetary systems

– Asteroid belts

– Extended systems (Oort clouds, etc.)

– Ring dynamics

– Orbital mechanics

– Simple galaxy simulations

– Dark matter

Collisions

• If we add collisions between bodies, we can do things
like:
– More accurate/complex ring dynamics
– Planet formation (mass agglomeration)
– Interplanetary impacts

• As the gravitational computations already have to loop
through all nearby objects and compute the distance,
the collision detection phase can be combined with the
gravitational calculation

• Bodies could be approximated as spheres for collision
physics, or they could be modeled as full geometric
rigid bodies

Gas Dynamics

• Many of the larger scale astrophysics phenomena
involve gas dynamics

• This includes:
– Star formation
– Star death, supernovas
– Galaxy motion
– Galaxy formation

• Gas dynamics are typically modeled with uniform grid
or particle-based methods such as SPH

• In fact, SPH was originally invented for astrophysics
simulations and only later adopted for water modeling

Gravity Trees

Inverse-Square Gravity

• If we are modeling orbital mechanics, planetary systems, or
galaxies, we need to consider the full inverse-square law of gravity
acting between two bodies

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• Where G is the universal gravitational constant (2014 version):

𝐺 = 6.67408 × 10−11
𝑚3

𝑘𝑔 ∙ 𝑠2

• d is the distance between the two bodies: 𝑑 = 𝐫1 − 𝐫2
• And e is a unit length vector pointing in the direction of

gravitational attraction (i.e., towards the other body)

Inverse-Square Gravity

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• We need to consider the gravitational force acting

on every pair of bodies
• In a system of n bodies, this means we need to

compute a gravitational force 𝑛 𝑛 − 1 2 times
• In terms of algorithm performance, this implies

O(n2) performance, which is potentially slow for
large values of n

Gravitational Dynamics

• Celestial simulations typically involve modeling the
gravitational interactions between multiple bodies

• If the number of bodies is small, this isn’t a big deal
• If the number of bodies is large, the N2 nature of the

problem becomes a bottleneck
• We ran into a similar problem when we considered

collisions between large numbers of objects. In some cases,
we were able to use grids or spatial hash tables to optimize
the collision detection to linear performance

• However, gravity interacts over very large distances, and so
can’t be optimized in the same way that short-range
collision interactions can

Octree Methods

• But there’s good news!

• We can use octree-based methods to reduce
O(n2) down to O(n log n), which is a huge gain
in performance

• One catch is that these methods do introduce
approximations, however we can control the
accuracy of the approximation and can
achieve good accuracy at a good speed

Gravity Octree

• The basic method starts by assuming all bodies are 0-dimensional
point masses. All bodies simply require a 3D position and a mass

• In each frame of the simulation, we construct an octree around all
of the points

• Then, we do a bottom-up traversal of the tree, computing the
aggregate mass and center or mass of each node in the tree. When
we get to the top of the tree, we have the total mass and a single
point representing the center of mass of the entire system

• Then, to compute the gravitational force at any point, we do a top-
down traversal of the tree. At each node, we decide if the single
point approximation is good enough or if we have to traverse
further. We explore a portion of the tree deep enough to produce a
good enough approximation of the total gravitational force

Gravity Octree

• Here is a summary:

ComputeGravity() {
1. Build octree
2. Compute aggregate masses
3. Compute forces

}

• Once we have the forces, we can integrate the

motion as usual

Build Octree

• We want to build an octree that fits around all of the points, so we
start by computing the bounding box of the points

• Computing a bounding box is linear in time and should be a fast
operation

• However, if we are simulating millions of points, this will involve
looping through a lot of memory, leading to poor cache
performance

• To minimize cache misses it is best to perform the box computation
in the motion integration stage of the previous frame, when the
positions of all particles are being updated (and are already in the
cache)

• Once we have a rectangular bounding box, we just turn it into a
cube by using the largest of the 3 dimensions

Octree Data Structure

• It’s nice to have a top-level data structure for the octree that stores
the bounding box dimensions and has some high-level control
functions

• There should be a separate data structure for a node in the tree.
The node should store a total mass (float), a center of mass (vec3),
and an index to the 8 child nodes

• Individual nodes really should not have to store their box
dimensions, as they can be very quickly computed during the
traversal process as needed. This saves memory and (more
importantly) memory bandwidth

• Also, instead of explicitly storing pointers to all 8 child nodes, one
can instead just store an index value for the first child and assume
all 8 are stored contiguously in memory. A single 32-bit index value
can work for trees with over a billion nodes

Build Octree

• Once we’ve set up dimensions of the top level cube in the tree, we can start
adding points

• We simply loop through the points and insert them one-by-one into the tree
• To insert a point, we add it to the top node
• If the node is an interior node (not a leaf node), then we determine which of the 8

sub-boxes the point is in and pass the insert operation to the appropriate child
node

• This process is repeated recursively until we get to a leaf node
• If the leaf node is not full (i.e., has fewer than MaxPointsPerLeaf), the point gets

added and the node stores the position and mass of the point
• Otherwise, we need to split the node by creating 8 child nodes
• The points that were already there are moved to the appropriate child
• The new point is then added to the appropriate child leaf node as well
• If this new leaf is full, the split process repeats recursively
• Otherwise, we add it to the leaf and we’re done

Octree Construction

• The performance of the point insertion
operation is relative to the number of nodes
visited, which is going to be proportional to
the average depth of the tree

• Insertion of a single point is therefore
logarithmic in performance

• Insertion of n points is therefore n log n

Mass Aggregation

• Once we’ve finished constructing the octree (step 1), we can move
onto step 2: mass aggregation

• In this step, we do a bottom-up traversal from the leaf nodes
• At each node we visit, we loop over the 8 children and add up their

mass and centers to compute a total mass and center of mass
• These values are then stored in the node
• Eventually, we will get up to the top node in the tree and have a

single mass and center of mass for the entire set of points
• Every node stores the mass and center of mass of all of its child

nodes. Leaf nodes contain explicit point masses, and interior nodes
represent aggregations of multiple point masses

• This operation visits all nodes in the tree. The number of nodes is
roughly a constant (1 + 1/8 + 1/64 + 1/512 + … = 8/7) times the
number of point masses, making this operation linear in overall
performance

Computing Forces

• Once we have built the tree and computed the aggregate masses, we can use the
tree to approximate the gravitational force anywhere that we want

• To compute the force at a point p, we first examine the top level node in the tree
• We want to determine if the aggregate mass is a good enough approximation for

estimating the gravity force
• The quality of the approximation is going to improve the further we are from the

box (i.e., the better it can be approximated as a single point)
• As a simple metric, we can compute the distance to the center of the box and

divide by the size of the box. If this is above some tolerance, then we accept the
approximation

• Otherwise, we recursively loop through the 8 children and add up the gravity force
from each

• In total, the number of nodes visited will be roughly proportional to log n
• If we use this process to compute the force on all n points, the total performance

of this step is n log n

Gravity Octree

• Step 2 is linear in performance and steps 1 and 3
are n log n, making the total performance n log n

• This is very good, as it is really just slightly worse
than linear for a large range of n

• This method can be used to compute
gravitational interactions between billions of
individual bodies

• It requires a single tolerance value in the force
computation step. Tuning this value can trade
between performance and accuracy

Barnes-Hut Algorithm

• This method based on the Barnes-Hut
algorithm

• “A Hierarchical O(N log N) Force-Calculation
Algorithm”, Barnes, Hut, 1986

• There have been several enhancements and
other algorithms developed since 1986, but
this algorithm is still at the heart of many
modern galactic simulations

Barnes-Hut Algorithm

• As it is at the core of many astrophysics simulations, the
Barnes-Hut algorithm has been optimized for GPUs and
supercomputers

• In 2014, 18600 GPUs were used to compute a Milky Way
galactic simulations with up to 242 billion particles

• To simulate 6 billion years takes about 4 days, using a
minimum time step of 75,000 years (taking about 4.5 seconds
per step)

“24.77 Pflops on a Gravitational Tree-Code to
Simulate the Milky Way Galaxy with 18600
GPUs”, Bedorf, Nitadori, Gaburov, Ishiyama,
Fujii, Zwart, 2014

Gas Dynamics

Interstellar Medium

• The interstellar medium (ISM) is the matter and
radiation that exists in the space between star systems
in a galaxy

• This mainly includes:
– Ionic gas: mainly hydrogen H+

– Atomic gas: mainly hydrogen H

– Molecular gas: mainly hydrogen H2

– Dust: solid grains of mainly Fe, Si, C, H20 ice, and CO2 ice

• In addition to hydrogen gasses, there is some helium
and trace amounts of carbon, oxygen, and nitrogen

Gas Phases

• It is typical to model interstellar gasses as having
three distinct phases:
– Cold dense phase (T<300 K) consisting mainly of

atomic and molecular hydrogen
– Warm phase (T ~104 K) consisting of atomic and

ionized hydrogen
– Hot phase (T ~106 K) consisting of gas that has been

shock heated by supernovas

• Several physical processes are responsible for the
kinetic and thermal energy exchanges between
these phases

Star Formation

• In dense regions of the ISM, the self-attraction
from gravity causes areas to collapse

• The collapse will ultimately lead to protostar with
a pressure-supported core that continues to
collect mass from the nearby cloud

• This will ultimately ignite and begin nuclear
fusion

• The star will settle into equilibrium between the
continuous nuclear explosion and the
gravitational contraction

Stellar Feedback

• Stars also return matter and thermal energy back
to the ISM through the processes of stellar
feedback, mainly through stellar winds and
supernovas

• Stars heat the ISM through stellar feedback and
the ISM cools mainly through radiative cooling

• Areas with newly forming stars cause strong
pressures in the ISM, leading to expanding
bubbles as the new stars blow the nearby gas out

Galactic Simulation

Galaxy Simulation

• Many galactic simulations are focused on
exploring the processes of galaxy formation and
evolution

• Galaxies start as large collapsing clouds of gas

• Stars form as local pockets of the gas collapse and
gradually, much of the gasses are consumed by
star formation

• From a simulation point of view, this implies a
large scale compressible fluid dynamics
simulation with thermal processes and gravity

Gas Modeling

• The gas dynamics are typically modeled either with a
uniform grid or with a particle method like SPH

• Unlike the fluids we’ve looked at so far, these gasses
are compressible and their densities will vary over time
and space

• We also can account for the gravitational forces in the
gas clouds using the Barnes-Hut algorithm or other
methods

• If we are using SPH, we will probably require that a
single particle represent a mass of 1000s of suns or
more

Sink Particles

• It is also common to use sink particles to represent
point masses like stars or black holes

• Sink particles can be used in both SPH and grid based
simulations

• Sink particles can be created automatically in areas
where the gasses collapse enough to trigger star
formation

• The sink particles will interact with overlapping gasses
through stellar feedback and mass accretion

• They will also interact gravitationally with everything
else and will exchange mass in both directions with the
gasses

Dark Matter

• Roughly 5% of the total mass-energy of the
universe is ‘ordinary’ matter and energy

• Roughly 27% is dark matter which interacts with
ordinary matter (and itself) through gravity only

• The remaining 68% is hypothetical dark energy
which is responsible for the current acceleration
of the expansion of the universe

• For galactic modeling, it is very important to
include the effects of dark matter, as it is
responsible for roughly 85% of the mass of a
galaxy

Dark Matter Modeling

• Dark matter is typically modeled in one of two
ways:
– As additional particles that only interact through

gravity

– As a static field that mimics the approximate
distribution of dark matter in a galaxy

• The first method is used in simulations of galaxy
formation and evolution, whereas the second
method is limited to simpler simulations of later
stage galaxies

Big Bang Modeling

• There have been huge supercomputer simulations that model the Big
Bang and formation of the universe using billions of particles

• They model the universe as a box that wraps in each dimension, tiling
infinitely, and starting from an initial uniform distribution of hot hydrogen
gas particles

• Typical cube sizes are 50-300 Mpc (1 megaparsec = 3.262x106 light years)
• The uniform cosmological expansion in all directions is modeled by

changing the distance scale of the simulation appropriately over time
• As the simulation progresses, gravity will cause some regions to collapse

down, leading to galaxy formation and ultimately leading to a distribution
of galactic clusters throughout the universe

• The simulations can be run from the big bang to the present day (13.8
billions years) and ultimately lead to galaxies that resemble real examples

• In this way, different cosmology models can be simulated and the results
compared to real observations

Illustris Project

• Width of box: 302.6 Mpc = 987M light years

• Smallest matter particle: 110,000 solar masses

• Smallest dark matter particle: 590,000

FIRE Project

• The FIRE (Feedback in Realistic Environments) Project
modeled the expansion of the universe leading to the
formation of individual galaxies to the present day

• These galaxies can then be rendered with a physically based
renderer (Latte) to produce images that are remarkably
similar to observed galaxies

FIRE-2

• “FIRE-2 Simulations: Physics versus Numerics
in Galaxy Formation”, Hopkins, et. al., 2018

