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Gravitational Simulations 

• Gravity alone can model several interesting 
systems such as: 
– Planetary systems 

– Asteroid belts 

– Extended systems (Oort clouds, etc.) 

– Ring dynamics 

– Orbital mechanics 

– Simple galaxy simulations 

– Dark matter 



Collisions 

• If we add collisions between bodies, we can do things 
like: 
– More accurate/complex ring dynamics 
– Planet formation (mass agglomeration) 
– Interplanetary impacts 

• As the gravitational computations already have to loop 
through all nearby objects and compute the distance, 
the collision detection phase can be combined with the 
gravitational calculation 

• Bodies could be approximated as spheres for collision 
physics, or they could be modeled as full geometric 
rigid bodies 



Gas Dynamics 

• Many of the larger scale astrophysics phenomena 
involve gas dynamics 

• This includes: 
– Star formation 
– Star death, supernovas 
– Galaxy motion 
– Galaxy formation 

• Gas dynamics are typically modeled with uniform grid 
or particle-based methods such as SPH 

• In fact, SPH was originally invented for astrophysics 
simulations and only later adopted for water modeling 



Gravity Trees 



Inverse-Square Gravity 

• If we are modeling orbital mechanics, planetary systems, or 
galaxies, we need to consider the full inverse-square law of gravity 
acting between two bodies 
 

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2
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• Where G is the universal gravitational constant (2014 version): 

 

𝐺 = 6.67408 × 10−11  
𝑚3

𝑘𝑔 ∙ 𝑠2
 

 
• d is the distance between the two bodies: 𝑑 = 𝐫1 − 𝐫2  
• And e is a unit length vector pointing in the direction of 

gravitational attraction (i.e., towards the other body) 



Inverse-Square Gravity 
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• We need to consider the gravitational force acting 

on every pair of bodies 
• In a system of n bodies, this means we need to 

compute a gravitational force 𝑛 𝑛 − 1 2  times 
• In terms of algorithm performance, this implies 

O(n2) performance, which is potentially slow for 
large values of n 



Gravitational Dynamics 

• Celestial simulations typically involve modeling the 
gravitational interactions between multiple bodies 

• If the number of bodies is small, this isn’t a big deal 
• If the number of bodies is large, the N2 nature of the 

problem becomes a bottleneck 
• We ran into a similar problem when we considered 

collisions between large numbers of objects. In some cases, 
we were able to use grids or spatial hash tables to optimize 
the collision detection to linear performance 

• However, gravity interacts over very large distances, and so 
can’t be optimized in the same way that short-range 
collision interactions can 



Octree Methods 

• But there’s good news! 

• We can use octree-based methods to reduce 
O(n2) down to O(n log n), which is a huge gain 
in performance 

• One catch is that these methods do introduce 
approximations, however we can control the 
accuracy of the approximation and can 
achieve good accuracy at a good speed 



Gravity Octree 

• The basic method starts by assuming all bodies are 0-dimensional 
point masses. All bodies simply require a 3D position and a mass 

• In each frame of the simulation, we construct an octree around all 
of the points 

• Then, we do a bottom-up traversal of the tree, computing the 
aggregate mass and center or mass of each node in the tree. When 
we get to the top of the tree, we have the total mass and a single 
point representing the center of mass of the entire system 

• Then, to compute the gravitational force at any point, we do a top-
down traversal of the tree. At each node, we decide if the single 
point approximation is good enough or if we have to traverse 
further. We explore a portion of the tree deep enough to produce a 
good enough approximation of the total gravitational force 



Gravity Octree 

• Here is a summary: 
 

ComputeGravity() { 
1. Build octree 
2. Compute aggregate masses 
3. Compute forces 

} 
 
• Once we have the forces, we can integrate the 

motion as usual 



Build Octree 

• We want to build an octree that fits around all of the points, so we 
start by computing the bounding box of the points 

• Computing a bounding box is linear in time and should be a fast 
operation 

• However, if we are simulating millions of points, this will involve 
looping through a lot of memory, leading to poor cache 
performance 

• To minimize cache misses it is best to perform the box computation 
in the motion integration stage of the previous frame, when the 
positions of all particles are being updated (and are already in the 
cache) 

• Once we have a rectangular bounding box, we just turn it into a 
cube by using the largest of the 3 dimensions 



Octree Data Structure 

• It’s nice to have a top-level data structure for the octree that stores 
the bounding box dimensions and has some high-level control 
functions 

• There should be a separate data structure for a node in the tree. 
The node should store a total mass (float), a center of mass (vec3), 
and an index to the 8 child nodes 

• Individual nodes really should not have to store their box 
dimensions, as they can be very quickly computed during the 
traversal process as needed. This saves memory and (more 
importantly) memory bandwidth 

• Also, instead of explicitly storing pointers to all 8 child nodes, one 
can instead just store an index value for the first child and assume 
all 8 are stored contiguously in memory. A single 32-bit index value 
can work for trees with over a billion nodes 



Build Octree 

• Once we’ve set up dimensions of the top level cube in the tree, we can start 
adding points 

• We simply loop through the points and insert them one-by-one into the tree 
• To insert a point, we add it to the top node 
• If the node is an interior node (not a leaf node), then we determine which of the 8 

sub-boxes the point is in and pass the insert operation to the appropriate child 
node 

• This process is repeated recursively until we get to a leaf node 
• If the leaf node is not full (i.e., has fewer than MaxPointsPerLeaf), the point gets 

added and the node stores the position and mass of the point 
• Otherwise, we need to split the node by creating 8 child nodes 
• The points that were already there are moved to the appropriate child 
• The new point is then added to the appropriate child leaf node as well 
• If this new leaf is full, the split process repeats recursively 
• Otherwise, we add it to the leaf and we’re done 



Octree Construction 

• The performance of the point insertion 
operation is relative to the number of nodes 
visited, which is going to be proportional to 
the average depth of the tree 

• Insertion of a single point is therefore 
logarithmic in performance 

• Insertion of n points is therefore n log n 



Mass Aggregation 

• Once we’ve finished constructing the octree (step 1), we can move 
onto step 2: mass aggregation 

• In this step, we do a bottom-up traversal from the leaf nodes 
• At each node we visit, we loop over the 8 children and add up their 

mass and centers to compute a total mass and center of mass 
• These values are then stored in the node 
• Eventually, we will get up to the top node in the tree and have a 

single mass and center of mass for the entire set of points 
• Every node stores the mass and center of mass of all of its child 

nodes. Leaf nodes contain explicit point masses, and interior nodes 
represent aggregations of multiple point masses 

• This operation visits all nodes in the tree. The number of nodes is 
roughly a constant (1 + 1/8 + 1/64 + 1/512 + … = 8/7) times the 
number of point masses, making this operation linear in overall 
performance 
 



Computing Forces 

• Once we have built the tree and computed the aggregate masses, we can use the 
tree to approximate the gravitational force anywhere that we want 

• To compute the force at a point p, we first examine the top level node in the tree 
• We want to determine if the aggregate mass is a good enough approximation for 

estimating the gravity force 
• The quality of the approximation is going to improve the further we are from the 

box (i.e., the better it can be approximated as a single point) 
• As a simple metric, we can compute the distance to the center of the box and 

divide by the size of the box. If this is above some tolerance, then we accept the 
approximation 

• Otherwise, we recursively loop through the 8 children and add up the gravity force 
from each 

• In total, the number of nodes visited will be roughly proportional to log n 
• If we use this process to compute the force on all n points, the total performance 

of this step is n log n 



Gravity Octree 

• Step 2 is linear in performance and steps 1 and 3 
are n log n, making the total performance n log n 

• This is very good, as it is really just slightly worse 
than linear for a large range of n 

• This method can be used to compute 
gravitational interactions between billions of 
individual bodies 

• It requires a single tolerance value in the force 
computation step. Tuning this value can trade 
between performance and accuracy 



Barnes-Hut Algorithm 

• This method based on the Barnes-Hut 
algorithm 

• “A Hierarchical O(N log N) Force-Calculation 
Algorithm”, Barnes, Hut, 1986 

• There have been several enhancements and 
other algorithms developed since 1986, but 
this algorithm is still at the heart of many 
modern galactic simulations 



Barnes-Hut Algorithm 

• As it is at the core of many astrophysics simulations, the 
Barnes-Hut algorithm has been optimized for GPUs and 
supercomputers 

• In 2014, 18600 GPUs were used to compute a Milky Way 
galactic simulations with up to 242 billion particles 

• To simulate 6 billion years takes about 4 days, using a 
minimum time step of 75,000 years (taking about 4.5 seconds 
per step) 

“24.77 Pflops on a Gravitational Tree-Code to 
Simulate the Milky Way Galaxy with 18600 
GPUs”, Bedorf, Nitadori, Gaburov, Ishiyama, 
Fujii, Zwart, 2014 



Gas Dynamics 



Interstellar Medium 

• The interstellar medium (ISM) is the matter and 
radiation that exists in the space between star systems 
in a galaxy 

• This mainly includes: 
– Ionic gas: mainly hydrogen H+ 

– Atomic gas: mainly hydrogen H 

– Molecular gas: mainly hydrogen H2 

– Dust: solid grains of mainly Fe, Si, C, H20 ice, and CO2 ice 

• In addition to hydrogen gasses, there is some helium 
and trace amounts of carbon, oxygen, and nitrogen 



Gas Phases 

• It is typical to model interstellar gasses as having 
three distinct phases: 
– Cold dense phase (T<300 K) consisting mainly of 

atomic and molecular hydrogen 
– Warm phase (T ~104 K) consisting of atomic and 

ionized hydrogen 
– Hot phase (T ~106 K) consisting of gas that has been 

shock heated by supernovas 

• Several physical processes are responsible for the 
kinetic and thermal energy exchanges between 
these phases 



Star Formation 

• In dense regions of the ISM, the self-attraction 
from gravity causes areas to collapse 

• The collapse will ultimately lead to protostar with 
a pressure-supported core that continues to 
collect mass from the nearby cloud 

• This will ultimately ignite and begin nuclear 
fusion 

• The star will settle into equilibrium between the 
continuous nuclear explosion and the 
gravitational contraction 



Stellar Feedback 

• Stars also return matter and thermal energy back 
to the ISM through the processes of stellar 
feedback, mainly through stellar winds and 
supernovas 

• Stars heat the ISM through stellar feedback and 
the ISM cools mainly through radiative cooling 

• Areas with newly forming stars cause strong 
pressures in the ISM, leading to expanding 
bubbles as the new stars blow the nearby gas out 



Galactic Simulation 



Galaxy Simulation 

• Many galactic simulations are focused on 
exploring the processes of galaxy formation and 
evolution 

• Galaxies start as large collapsing clouds of gas 

• Stars form as local pockets of the gas collapse and 
gradually, much of the gasses are consumed by 
star formation 

• From a simulation point of view, this implies a 
large scale compressible fluid dynamics 
simulation with thermal processes and gravity 



Gas Modeling 

• The gas dynamics are typically modeled either with a 
uniform grid or with a particle method like SPH 

• Unlike the fluids we’ve looked at so far, these gasses 
are compressible and their densities will vary over time 
and space 

• We also can account for the gravitational forces in the 
gas clouds using the Barnes-Hut algorithm or other 
methods 

• If we are using SPH, we will probably require that a 
single particle represent a mass of 1000s of suns or 
more 

 



Sink Particles 

• It is also common to use sink particles to represent 
point masses like stars or black holes 

• Sink particles can be used in both SPH and grid based 
simulations 

• Sink particles can be created automatically in areas 
where the gasses collapse enough to trigger star 
formation 

• The sink particles will interact with overlapping gasses 
through stellar feedback and mass accretion 

• They will also interact gravitationally with everything 
else and will exchange mass in both directions with the 
gasses 
 



Dark Matter 

• Roughly 5% of the total mass-energy of the 
universe is ‘ordinary’ matter and energy 

• Roughly 27% is dark matter which interacts with 
ordinary matter (and itself) through gravity only 

• The remaining 68% is hypothetical dark energy 
which is responsible for the current acceleration 
of the expansion of the universe 

• For galactic modeling, it is very important to 
include the effects of dark matter, as it is 
responsible for roughly 85% of the mass of a 
galaxy 



Dark Matter Modeling 

• Dark matter is typically modeled in one of two 
ways: 
– As additional particles that only interact through 

gravity 

– As a static field that mimics the approximate 
distribution of dark matter in a galaxy 

• The first method is used in simulations of galaxy 
formation and evolution, whereas the second 
method is limited to simpler simulations of later 
stage galaxies 



Big Bang Modeling 

• There have been huge supercomputer simulations that model the Big 
Bang and formation of the universe using billions of particles 

• They model the universe as a box that wraps in each dimension, tiling 
infinitely, and starting from an initial uniform distribution of hot hydrogen 
gas particles 

• Typical cube sizes are 50-300 Mpc (1 megaparsec = 3.262x106 light years) 
• The uniform cosmological expansion in all directions is modeled by 

changing the distance scale of the simulation appropriately over time 
• As the simulation progresses, gravity will cause some regions to collapse 

down, leading to galaxy formation and ultimately leading to a distribution 
of galactic clusters throughout the universe 

• The simulations can be run from the big bang to the present day (13.8 
billions years) and ultimately lead to galaxies that resemble real examples 

• In this way, different cosmology models can be simulated and the results 
compared to real observations 
 



Illustris Project 

• Width of box: 302.6 Mpc = 987M light years 

• Smallest matter particle: 110,000 solar masses 

• Smallest dark matter particle: 590,000 



FIRE Project 

• The FIRE (Feedback in Realistic Environments) Project 
modeled the expansion of the universe leading to the 
formation of individual galaxies to the present day 

• These galaxies can then be rendered with a physically based 
renderer (Latte) to produce images that are remarkably 
similar to observed galaxies 



FIRE-2 

• “FIRE-2 Simulations: Physics versus Numerics 
in Galaxy Formation”, Hopkins, et. al., 2018 


