
Collision Detection

Steve Rotenberg
CSE291: Physics Simulation

UCSD
Spring 2019



Collision Detection

• Collision detection is the geometric process of 
determining whether two (or more) objects intersect

• It is closely related to collision response, which is the 
physics process of determining collision and contact 
forces

• However, it is still separate and can be designed as a 
self-contained module that purely does geometry 
analysis and no physics

• The higher level physics code can use the collision 
detection code to determine if collisions occur and 
obtain the geometric results of the collision test



Collision Results

• There are different types of results that we 
may be interested in from our collision tests
– For example, in some cases, we simply need to 

know if two objects intersect, but we don’t need 
any other information

– In other cases, we want to obtain some basic 
information about the collision point, such as the 
position and normal

– In other cases, we may want a full 3D intersection 
geometry generated for the overlapping region



Collision Phases

• Narrow phase: geometric intersection testing 
of individual primitives

• Mid phase: optimization layer to handle 
objects made from many primitives (1000s of 
triangles, etc.)

• Broad phase: top-level optimization layer 
focused on reducing the number of pairs of 
objects tested for collisions (1000s of objects, 
etc.)



Collision Primitives
• There are various primitives we may want test for collisions, such as:

– Point
– Line
– Triangle
– Sphere
– Ellipsoid
– Cylinder, capsule
– Axis-aligned box
– Oriented box
– k-DOP
– Convex polyhedron
– Nonconvex ‘watertight’ polyhedron
– Nonconvex ‘polygon soup’

• Each of these tends to require dedicated code for the collision analysis, so 
supporting 𝑛 different primitive types may require up to 𝑛 𝑛 + 1 /2
primitive-primitive tests to be implemented

• Most systems work with a subset of this list and may have some 
limitations on what can be collided with what



Discrete vs. Continuous

• Some collision testing algorithms are discrete 
meaning that they analyze a single discrete 
moment in time, where every object has a 
single configuration

• Other methods are continuous meaning they 
consider an initial and final configuration over 
a time step and determine if and when a 
collision happened at any point in between



Basic Intersection Tests



Line Segment vs. Triangle

• Consider the case of testing a line segment 𝐚𝐛
against triangle 𝐩0𝐩1𝐩2:

𝐚

𝐛

𝐩0

𝐩2

𝐩1

𝐱



Line Segment vs. Triangle

• First, compute signed distances of 𝐚 and 𝐛 to the 
plane:

𝑑𝑎 = 𝐚 − 𝐩0 ⋅ 𝐧
𝑑𝑏 = 𝐛 − 𝐩0 ⋅ 𝐧

• Where 𝐧 is the unit length normal of the triangle
• Reject if both are above or both are below plane
• Otherwise, find intersection point 𝐱:

𝐱 =
𝑑𝑎𝐛 − 𝑑𝑏𝐚

𝑑𝑎 − 𝑑𝑏



Point Inside Triangle

• To determine if the point 𝐱 is inside the triangle, we compute the 
barycentric coordinates 𝛼 and 𝛽 :

𝐮 = 𝐩1 − 𝐩0
𝐯 = 𝐩2 − 𝐩0
𝐰 = 𝐱 − 𝐩0

𝛼 =
𝐮⋅𝐯 𝐰⋅𝐯 − 𝐯⋅𝐯 𝐰⋅𝐮

𝐮⋅𝐯 2− 𝐮⋅𝐮 𝐯⋅𝐯

𝛽 =
𝐮⋅𝐯 𝐰⋅𝐮 − 𝐮⋅𝐮 𝐰⋅𝐯

𝐮⋅𝐯 2− 𝐮⋅𝐮 𝐯⋅𝐯

• The point is inside the triangle if 𝛼 ≥ 0, 𝛽 ≥ 0 and 𝛼 + 𝛽 ≤ 1

𝛽

𝛼
𝐩0

𝐩2

𝐩1

𝐱



Triangle vs. Triangle

• Consider testing triangle 𝐩0𝐩1𝐩2 against 
triangle 𝐪0𝐪1𝐪2:

𝐩0

𝐩2

𝐩1𝐪1

𝐪0 𝐪2



Triangle vs. Triangle

• To test two triangles, we start by computing the 
signed distance of the verts of each one to the 
plane of the other

• If they are all on one side, there is no intersection
• Otherwise, we intersect the two edges of one 

with the plane of the other in the same fashion as 
we did for a single segment

• We then clip the line segment connecting the two 
points to the triangle in the 2D plane

• If any part of the line segment remains, it 
represents the intersection of the two triangles



Sphere vs. Sphere

• Two spheres will intersect if the distance between their 
centers is less than the sum of their radii

𝐜1 − 𝐜2 ≤ 𝑟1 + 𝑟2

• It’s quicker to avoid the square root in the distance 
computation by squaring both sides of this equation 
(which is safe, as both sides are guaranteed to be 
positive)

𝐜1 − 𝐜2
2 ≤ 𝑟1 + 𝑟2

2



Sphere vs. Line Segment

• To test a sphere with center 𝐜 and radius 𝑟 against a line segment 𝐩0𝐩1, 
we find the parametric distance of the point along the line segment that is 
closest to the sphere center

𝑡 = 𝐜 − 𝐩0 ⋅
𝐩1 − 𝐩0
𝐩1 − 𝐩0

2

• If 𝑡 ≤ 0, the sphere hits 𝐩0 if 𝐜 − 𝐩0
2 ≤ 𝑟2

• Else if 𝑡 ≥ 1, the sphere hits 𝐩1 if 𝐜 − 𝐩1
2 ≤ 𝑟2

• Else if 𝑡 is between 0 and 1, then the closest point between the sphere 
and the line is:

𝐱 = 𝐩0 + 𝑡 𝐩1 − 𝐩0

• The sphere hits 𝐱 if 𝐜 − 𝐱 2 ≤ 𝑟2

• Otherwise, there is no intersection

𝐩0 𝐩1𝐱

𝐜
𝐜 − 𝐩0



Sphere vs. Triangle

• Testing sphere vs. triangle is equivalent to testing the 
distance of a point to a triangle:
1. We first find the distance from the center of the sphere to the 

plane of the triangle. If this is greater than the radius or less 
than the negative radius, they don’t intersect

2. We then use the distance to find the closest point on the 
plane to the center of the sphere. If this point is within the 
triangle, the sphere hits the plane of the triangle

3. We then test if the sphere hits any of the edges of the triangle
4. Finally, we test if the sphere intersects any of the vertices

• If a collision is identified in step 2, 3, or 4, each case has a 
straightforward way to find the contact point and normal

• This method generalizes to sphere vs. mesh, where we 
can save time by not testing duplicate vertices or edges



Capsules

• Capsules are cylinders with rounded caps
• They can also be thought of as a line segment 

with a radius, which leads to some fast 
algorithms

• They are mainly useful as bounding volumes for 
optimization

• Capsule vs. sphere reduces to testing the distance 
from a line segment to a point

• Capsule vs. capsule reduces to testing the 
distance between two line segments



Separating Axis Theorem



Separating Axis Theorem

• If we have two convex solids that are 
not intersecting, we should be able to 
find a separating plane such that each 
object is on a different side and neither 
intersects the plane

• Another way of looking at this is to 
project all of the points of both objects 
onto a line normal to the plane and 
observe that they form two separate 
non-overlapping intervals

• This is known as the separating axis 
theorem (SAT)



Separating Axis Theorem

• If we can find an axis such that the two objects 
project onto non-overlapping intervals, then we 
know the objects don’t intersect

• If we limit ourselves to convex polyhedra, we can 
identify a finite number of possible axes to test, 
but it may still be a large number

• If we further limit ourselves to oriented boxes, we 
can reduce the number of possible axes to 15



Axis Testing

• Let’s say we have two convex polyhedra and we want 
to project them onto an axis 𝐚 to test for overlap

• For each vertex 𝐱𝑖 of an object, we find its projection 
onto the axis as 𝐱𝑖 ⋅ 𝐚

• We project all of the verts of each object and keep 
track of the min & max value for each

• Then, we simply check if the min/max ranges overlap
• If they don’t overlap, then we know for sure that the 

two objects don’t intersect
• If they do overlap, we simply know that this particular 

axis doesn’t separate them, but it doesn’t say whether 
or not a different axis will



Testing All Axes

• Given two non-intersecting convex polyhedra, we should be able to find a 
finite number of possible separating planes to test

• We can use the planes of the faces of each polyhedra as a start
• However, we can still find non-intersecting cases where none of the face 

planes separate them (consider two boxes nearly touching edge to edge)
• We must also test the planes formed by any edge of one object with any 

edge of the other object
• If 𝑓𝑛 is the number of faces in object 𝑛 and 𝑒𝑛 is the number of edges, 

then the maximum number of possible axes we would have to test would 
be:

𝑒1𝑒2 + 𝑓1 + 𝑓2

• However, we can reduce this by removing parallel planes and edges



Box Testing

• For the special case of boxes (with arbitrary rotation), this reduces down 
to only 3 unique planes per object and only 3 unique edges, leaving 
3*3+3+3=15 total axes to test

• If each box has a 3x3 orientation matrix 𝐌𝑛 whose column vectors are 
𝐌𝑛 = 𝐚𝑛 𝐛𝑛 𝐜𝑛 , then we would want to test all of the following axes:

𝐚1 𝐛1 𝐜1
𝐚2 𝐛2 𝐜2
𝐚1 × 𝐚2 𝐚1 × 𝐛2 𝐚1 × 𝐜2
𝐛1 × 𝐚2 𝐛1 × 𝐛2 𝐛1 × 𝐜2
𝐜1 × 𝐚2 𝐜1 × 𝐛2 𝐜1 × 𝐜2

• As soon as we find an axis that doesn’t overlap, we are done
• If all of them overlap, then the objects must intersect



Box Test Performance

• To test two boxes for overlap, we need to loop through up 
to 15 axes

• For each axis, we need to project 8 corners of 2 boxes, 
requiring 16 dot products total, as well as an equal number 
of min & max operations, which are typically done in a 
single clock cycle

• Finding the corner positions in world space requires very 
little effort due to symmetries in the box, and this only 
needs to happen once per object (i.e., can be re-used to 
test against other objects later)

• Overall, we would expect a single box-box test to run 
extremely fast on a modern CPU/GPU and this is also a very 
good case for SIMD vector operations



Recovering Contact Information

• If we determine that the two objects do intersect, 
we typically would want to know some additional 
information about the contact site

• The minimal information would be a position and 
normal

• More detailed information might include the 
contact manifold (intersection of the two object’s 
boundaries), or the full contact polyhedron 
(intersection of the two object’s volumes)



Recovering Contact Information

• If the objects intersect, then all of the axes will have some amount of 
overlap

• The axis with the least overlap represents the axis that allows the two 
objects to be separated with the least movement

• In other words, it is reasonable to base the collision point and normal off 
of the axis with the least overlap

• We can use the axis itself as the normal
• If the axis is based on a plane, then we can find the collision point as the 

point that went deepest into the plane
• If the axis is based on the cross product of edges, we find the nearest 

point between the two edges and use that as the position
• This process is very simple and fast and works about 99% of the time. 

There are occasional cases where the shallowest overlap actually doesn’t 
correspond to an actual collision, and we must go with the second 
smallest overlap. This case can be identified if we first use the shallowest 
one but then determine that the resulting point is not inside both boxes



Convex Collision Detection



Convex vs. Non-convex

• Collision detection with well modeled 
manifold non-convex geometry is difficult

• Collision detection with poorly modeled non-
manifold ‘polygon soups’ is very tricky and 
poorly defined in many cases

• Most systems prefer to use convex objects for
collision detection, as it is much easier to
come up with consistent, reliable algorithms



GJK Algorithm

• The Gilbert-Johnson-Keerthi (GJK) algorithm is a 
popular method for computing the distance between 
two arbitrary convex objects

• One nice feature is that it can be adapted to handle
intersections between different object classes (such as 
spheres vs. convex polyhedral) with minimal effort

• It is also an incremental algorithm that can be 
initialized when two objects get close enough, and 
then incrementally updated very quickly as they 
remain close

• It’s worth being familiar with it, but it is a bit complex 
to go over in this lecture. Google it!



Convex Decomposition

• One can take a non-convex model and 
automatically split it up into multiple convex 
models

• This is called a convex decomposition

• It is also popular to do an approximate convex 
decomposition (ACD), where the original model is 
split up into meshes that are within some 
tolerance of being convex

• This allows for fast, reliable collision detection of 
general solid objects



Convex Decomposition

• “Approximate Convex Decomposition of Polyhedra”, 
Lien, Amato, 2007

• “A Simple and Efficient Approach for 3D Mesh 
Approximate Convex Decomposition”, Mamou, 
Ghorbel, 2010



Continuous Collision Detection



Continuous Collision Detection

• A variety of continuous collision detection methods have been 
devised over the years

• These methods use starting and ending configurations for 
each object to test if any collisions happened in the time 
between

• Related approaches are also useful for handling highly
deformable objects like cloth



Continuous Collision Detection

• “Fast Continuous Collision Detection Between 
Rigid Bodies”, Redon, Kheddar, Coquillart, 
2002

• This paper introduced a popular method that 
has been extended in various ways

• The basic approach assumes that each object 
moves along a straight path while rotating at a 
constant angular velocity. This implies that
any point on the objects will follow a helical 
path (sometimes called screw motion)

• Algebraic equations are set up to test the 
motion trajectories of points and edges of the 
objects and these are evaluated using interval 
arithmetic to compute bounded results



Interval Arithmetic

• An interval is defined as 𝑎, 𝑏 = 𝑥 ∈ ℝ|𝑎 ≤ 𝑥 ≤ 𝑏 , 
where 𝑎 = −∞ and 𝑏 = ∞ are allowed

• Basic arithmetic operations are:
𝑥1, 𝑥2 + 𝑦1, 𝑦2 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2
𝑥1, 𝑥2 − 𝑦1, 𝑦2 = 𝑥1 − 𝑦2, 𝑥2 − 𝑦1
𝑥1, 𝑥2 ⋅ 𝑦1, 𝑦2 =

min 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2 , max 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2

• As well as more advanced operations such as division



CCD References

• Some good CCD papers:

• “Fast and Exact Continuous Collision Detection with
Bernstein Sign Classification”, Tang, Tong, Wang, 
Manocha, 2014

• “Efficient Geometrically Exact Continuous Collision
Detection”, Brochu, Edwards, Bridson, 2012

• “Continuous Collision Detection for Articulated Models 
using Taylor Models and Temporal Culling”, Zhang, 
Redon, Lee, Kim, 2007

• “Interactive Continuous Collision Detection for Non-
Convex Polyhedra”, Zhang, Lee, Kim, 2006



Collision Optimization



Collision Phases

• So far, we’ve mainly looked at narrow phase 
collision testing of primitive to primitive

• We definitely want fast narrow phase algorithms, 
but even the fastest narrow phase algorithms will 
be slow when lots of primitives are involved and 
any primitive may potentially intersect with any 
other

• To optimize cases with complex geometry, 
deformable geometry, and/or many moving 
objects, we need to use some spatial data 
structures



Mid-Phase Testing

• Mid-phase testing refers to the intersection 
testing of two complex objects, each made from 
potentially thousands of primitives

• It would also apply to dealing with deformable 
but contiguous objects, like cloth

• If we have two objects, each with 1000 triangles, 
we need to potentially test 1000000 triangle-
triangle pairs

• Mid-phase optimization aims to drastically reduce 
this to as few as possible



Bounding Volume Hierarchies

• Bounding volume hierarchies (BVH) are tree-like 
data structures that group sub-trees into simple 
bounding volumes like spheres or boxes

• The volumes can overlap, so that a point may be 
contained in several leaf volumes

• Common examples include:
– Sphere tree

– AABB tree (axis-aligned bounding box)

– OBB tree (oriented bounding box)

– k-DOP tree (discreet oriented polytope)



Sphere Trees

• Sphere-sphere tests are probably the fastest 
primitive collision test, making sphere trees a 
simple and tempting option for a BVH

• However, spheres are notoriously poor fitting 
for many objects, leading to lots of extra tests

• It is also relatively expensive to compute a 
tight fitting sphere around a set of points, so 
they are not very good for dynamic geometry



AABB Trees

• Axis-aligned bounding box (AABB) trees use a 
hierarchy of axis-aligned boxes making them 
simple and fast

• They can be generated fairly quickly, perform 
generally fast, and are easy to implement

• They can be updated very quickly, and so are a 
good choice for dynamic cases like deformable 
solids or scenes with many bodies

• Their main disadvantage is that they are not 
always a tight fit, and the tightness of the fit is 
also dependent on the orientation of the object



Axis Aligned Bounding Box Tree

a

b

c

d
e

f
g

h

a b

c

d e f

g h



OBB Trees

• Oriented bounding box (OBB) trees use boxes 
that can be scaled and rotated in order to 
optimize how they fit around geometry

• Even though OBBs are more expensive to test 
than AABBs or spheres, they tend to out-
perform them for rigid geometry, because 
they are able to fit tighter

• They are expensive to generate, and so can 
really only be used for rigid geometry



k-DOPs

• By the way, a k-DOP is a discrete oriented polytope bounded 
by k/2 pairs of parallel planes

• They are a very fast a potentially tightly fitting bounding 
volume that are preferred by some

• Their main disadvantage would be that they take more time 
to compute optimal bounding volumes than many other 
methods, so they are more applicable to static geometry



Spatial Partitions

• Spatial partitions divide up space into volumes such that a point 
within the top level volume will end up in exactly one leaf volume

• Hierarchical examples:
– Octree

• Top level volume is a cube
• Each level splits into 8 equal cubes

– KD-Tree (k-dimensional)
• Top level volume is a box or infinite
• Each level splits into 2 at arbitrary point along x, y, or z

– BSP-Tree (binary separating plane)
• Top level volume is a convex polyhedron or infinite
• Each level splits into 2 along an arbitrary plane

• Non-hierarchical examples:
– Uniform grid
– Spatial hash table



Spatial Hash Table

• Spatial hash tables are like an infinite grid, where 
only occupied cells use memory

• They are excellent for scenes with a large number 
of similar sized objects

• It is best if no object is larger than 1 cell, so that 
no object can overlap more than 8 boxes

• They are ideal for situations where all objects are 
the same size, such as SPH fluid simulations and 
granular simulations

• In these cases, they should perform in linear O(n) 
time



Broad Phase Testing

• Broad phase testing refers to the optimizations and related 
data structures for dealing with a large number of distinct 
objects moving around and potentially colliding in a scene

• It is also referred to as pair reduction, as the goal is to 
reduce the number of potential collision pairs down from 
the worst case 𝑛2 performance

• Several of the mid phase approaches are also valid here, 
such as AABB trees and spatial hash tables, which both can 
be updated quickly to accommodate moving objects

• In addition to these, the sweep and prune algorithm is also 
popular for broad phase testing



Sweep and Prune

• The basic sweep and prune algorithm chooses an axis (such as x-axis) and 
projects all objects to it to find their start and end interval along the axis

• Next, the min and max values for all objects are sorted into a list
• Then, we sweep down the list, maintaining an ‘active list’ that starts out 

empty
– When we get to a new min value, we pair it with all objects on the active list 

and add these pairs to another list of potentially colliding pairs. We then add 
the new object to the active list

– When we get to a new max value, we remove the associated object from the 
active list

• Once we finish with the axis, we can do the same thing for the y- and z-
axes. Once we finish that, we find any pairs that overlap on all 3 axes and 
do further collision testing on them (mid or narrow phase)

• The basic algorithm is simple and fast and can be improved by using 
incremental sorting algorithms, as the sorted list changes very little from 
frame to frame

• There are many other enhancements to the algorithm, such as 
adaptations to parallel processors or GPUs


