Rigid Body Motion

Steve Rotenberg
CSE291: Physics Simulation
UCSD, Spring 2019



Cross Product

axb=la. a

a><b:[aybz—azby ab —ab ab —ab]



Properties of the Cross Product

m Non-commutative:
axb##bxa

m Non-associative:
axX(bxc)#(@axb)xc



Cross Product
a><b:[aybZ -a,b, ab,—ab, ab —ab ]

=axDb
¢, =0-b,—ab, +anb,
¢, =a,b, +0-b, —ahb,
c,=-ab +ab, +0-b,



Cross Product

c,=0-b,—ab, +apb,

¢, =a,b, +0-b,—apb,

C

VA

C
C
C

X

y

Z

0
a'Z

a,b, +ab, +0-b,




Cross Product

c| | O
C, |=| &, 0
Cc, | |—-a, a,
axb=a-b
_ a
a=| a, 0
—-a, a,




Hat Operator

We've introduced the ‘hat’ operator which converts a
vector into a skew-symmetric matrix (2’ = —a)

This allows us to turn a cross product of two vectors into
a dot product of a matrix and a vector

This is mainly for algebraic convenience, as the dot
product is associative (although still not commutative)

a-b=axb

a-b+b-a (noncommutative)
a-(b-c)=(a-b)-c (associative)



Derivative of a Rotating Vector

m Let's say that vector r Is rotating around the
origin, maintaining a fixed distance

m At any instant, it has an angular velocity of w

dr

— =@XTr

dt




Derivative of Rotating Matrix

m If matrix A is a rigid 3x3 matrix rotating with
angular velocity w

m This implies that the a, b, and ¢ axes must be
rotating around w

m The derivatives of each axis are wxa, wxb, and
wxc, and so the derivative of the entire matrix Is:

dA

—=0xA =0-A
dt



Product Rule

m The product rule defines the derivative of
products

d[ab)_dab _ db

dt  dt dt

d(abc):@bc | adbc Cab
dt dt dt ~at




Product Rule

m It can be extended to vector and matrix products
as well




Eigenvalue Equation

B Lets say we have a known matrix M and we want to know if there is
any vector x and scalar s such that

Mx = sx

s This is known as an eigenvalue equation, and for a NxN matrix,
there should be up to N eigenvectors x; and N eigenvalues s; that
satisfy the equation

= If Mis a symmetric matrix (i.e., M” = M) then all of the eigenvalues
will be real numbers and the eigenvectors will be real, orthonormal
vectors (otherwise, some of the eigenvalues/eigenvectors will be
complex)



Symmetric Matrix
B If we have a symmetric matrix M, we can diagonalize it:
M,=A"-M-A

s Where M, is a diagonal matrix and A is an orthonormal (pure
rotation) matrix

s The columns of A are the eigenvectors of M and the diagonal
elements in M, are the corresponding eigenvalues

s The symmetric Jacobi algorithm is a simple and effective matrix
algorithm for computing this diagonalization



Symmetric Matrix Diagonalization

=
(M oy Mxy M, |
M=|Myy My, My,
_sz Myz Mzz_
M, 0 O
M,=A"-M-A where My=|0 M, O
0 0 M,







Kinematics of a Particle

X pOSItion
dx .
V=— veloc |
dt Y
~dv d°x

a=—=—— acceleration
dt dt



Mass, Momentum, and Force

11 mass

p=mv momentum
d

f = ap = ma force



Moment of Momentum

m The moment of momentum IS a vector
L=rxp

m Also known as angular momentum (the two terms mean
basically the same thing, but are used in slightly different
situations)

m Angular momentum has parallel properties with linear
momentum

m In particular, like the linear momentum, angular
momentum is conserved in a mechanical system

= Itis typically represented with a capital L, whichis
unfortunately inconsistent with our standard of using
lowercase for vectors...



Moment of Momentum

m L is the same for all three of these particles

L =rxp



Moment of Momentum

m L is different for all of these particles

L =rxp




Moment of Force (Torque)

m The moment of force (or torque) about a
point Is the rate of change of the moment
of momentum about that point

_dL
dt

T



Moment of Force (Torque)

L=rxp
dL dr dp
T:—:—Xp+r><—
dt dt dt

T=VxXP+rxf
T :Vx(mv)+r><f

T=rxf



Rotational Inertia

m L=rxp Is a general expression for the
moment of momentum of a particle

m [n a case where we have a particle
rotating around the origin while keeping a
fixed distance, we can re-express the
moment of momentum in terms of it's
angular velocity w




Rotational Inertia

L=rxp

L =rx(mv)=mrxv
L:mrx((oxr):—mrx(rxw)
L=—mr-r-o



Rotatlonal Inertla

| = m?

1
0 -r, T,
| =-m| T, 0 -,
-r, . 0
2 2
o el r.r,
l=—m| rr —r?
N rr,




Rotational Inertia

F 2 2
m(ry +1, ) —Mmr,r, —Mmrr,
2 2
| =| —mrr, m(rX +rz) —mr,r,
2 2
- —mnr, —mr,r, m(rX +1, )_

L=1-0©




Rotational Inertia

m The rotational inertia matrix | is a 3x3 matrix that
IS essentially the rotational equivalent of mass

m It relates the angular momentum of a system to
Its angular velocity by the equation

L=1 o

m This Is similar to how mass relates linear

momentum to linear velocity, but rotation adds
additional complexity

D=my






Systems of Particles

n
M, = Z m.  total mass of all particles

Zm,xI
Xem X

position of center of mass

- Z Pi = Z m;V, total momentum -



Velocity of Center of Mass

dx.
. Zmi dt _ ernlvI
cm Zmi Zm,
ch _ pcm
m



Force on a Particle

m The change in momentum of the center of mass

IS equal to the sum of all of the forces on the
iIndividual particles

m This means that the resulting change in the total
momentum is independent of the location of the
applied force




Systems of Particles

m The total moment of momentum around
the center of mass Is:

Lcm :Zrixpi

I—cm = Z (Xi B Xcm)x P;



Torque In a System of Particles

Zr 9

L er 0

T = _

Zd(rxp)

dt




Systems of Particles

m \We can see that a system of particles behaves a lot like
a particle itself

m It has a mass, position (center of mass), momentum,
velocity, acceleration, and it responds to forces

1:cm = Zfl

m We can also define it's angular momentum and relate a

change in system angular momentum to a force applied
to an individual particle

Tem :Z(ri Xfi)



Internal Forces

If forces are generated within the particle system
(say from gravity, or springs connecting
particles) they must obey Newton’s Third Law
(every action has an equal and opposite
reaction)

This means that internal forces will balance out
and have no net effect on the total momentum of
the system

As those opposite forces act along the same line
of action, the torques on the center of mass
cancel out as well — -






Kinematics of a Rigid Body

m For the position of the center of mass of the rigid
body:

Xcm
dXCm
ch —
dt
2
N dv_. _ d°X,,

R | dt?



Kinematics of a Rigid Body
m For the orientation of the rigid body:
.\ 3x3 orientation matrix

angular velocity

€

® =——  angular acceleration



Rigid Bodies

We treat a rigid body as a system of particles, where the
distance between any two particles is fixed

We will assume that internal forces are generated to
hold the relative positions fixed. These internal forces
are all balanced out with Newton’s third law, so that they
all cancel out and have no effect on the total momentum
or angular momentum

The rigid body can actually have an infinite number of
particles, spread out over a finite volume

Instead of mass being concentrated at discrete points,
we will consider the density as being variable over the
volume



Rigid Body Mass

m With a system of particles, we defined the total
mass as:

M = Zn:mi
i=1

m For arigid body, we will define it as the integral
of the density p over some volumetric domain Q

m:jde



Rigid Body Center of Mass

m The center of mass Is:

j oXde2
e




Rotational Inertia of a Particle

m Recall that the rotational inertia for a single
particle of mass m as position r is:

m(n,% + 1,2) —MT, 1, — T, T,
[=| -—-mnmn m(r? + 1,%) —mmn, 1,
—MT, 1, —mr, 1, m(n? + 1,?%)




Rigid Body Rotational Inertia

[ j ,o(ry2 + rf)dQ — I pr,r,dQ - j orrdQ
| = —jprxrde jp(rxz + rf)dQ —jpryrde
- J or r.do — J pr,r,d0 j ,o(rx2 + ryz)dQ_
e 1y le




Rigid Body Rotational Inertia

The rigid body rotational inertia Is a 3x3 symmetric matrix that
encodes the distribution of mass around the center of mass

It is calculated by calculating the integrals on the previous slide by
Integrating over the volume of the rigid body where r indicates the
vector from the center of mass to the position of the volume
Integration element and p represents the density at that location

These integrals can be calculated with analytical formulas for simple
shapes like spheres, cylinders, and boxes

There also exists an analytical technique for computing them on
triangle meshes as well (Mirtich-Eberly algorithm)



Rotational Inertia Diagonalization

L As the rotational inertia matrix is symmetric, we can diagonalize it and find
the orthonormal matrix A:

I,b,=AT-1-A

m  We are essentially finding the orientation for the rigid body such that its
rotational inertia matrix is diagonal

= Whenitis rotated into this coordinate system, the x, y, and z axes define
the principal axes

m Typically, we like to model the rigid body such that it is oriented this way
(i.e., in local space, the center of mass is at the origin and the principal axes
line up with x, y, and z)

m That way, its rotational inertia properties can be represented with three

niimhare (1 I and I Y\ and tha matriv A ic tha matriv that ariante tha rinid



Diagonalization of Rotational Inertia

. — -
Ixx Ixy' Ixz

| = Ixy Iyy Iyz

_Ixz Lyz Izz_

-

I, =A"-1-A where I,=

S O

S Ou



Rotational Inertia of a Box
m Fox a box of mass m and dimensions a X b X c:
_ M o2 2
L, = = (b= + c*)
_ M2 2
I == (a“ + c*)

y

m
IZ — ﬁ(az + bz)



Rotational Inertia of a Sphere
m For a solid sphere of mass m and radius r-

2mr?




Rotational Inertia

m If we have modeled the rigid body such that it
the origin is at the center of mass and the
principal axes line up with x, y, and z, then the

values of m, I, I,,, and I, tell us everyt

ning we

need to know about the mass and its ¢
that we need to know

Istribution

When we orient our rigid body in space with a

matrix A, the rotational inertia matrix I in world

space is:

m



Derivative of Rotational Inertial

(@)

T T
_dlA-1,-A )zd—A-Io°AT +Ao|o(d_Aj
dt dt dt

-

—oxA-l,-AT + A1, (0xA)

Y

—oxl+A-1,-(®-A)

:0)><I+A-IO-(AT -6)T):0)><I+I-6)T

-

—oxl-1-®

Ol ol ol ol o
— -




Derivative of Angular Momentum

L=1 o
~dL I do
—=—0+1-—
dt dt dt
t=(oxl-1-®)o+l-©

T=0xl-0-1-0-0+]-®

T=0x1- 0+ - ®



Newton-Euler Equations

f =ma

T=0xXl- 0+ -©



Applied Forces & Torques

fcg :Zfi
T, :Z(r‘i xfi)



Properties of Rigid Bodies

m I

X A

\Y; 0

a [0)

p=mv L=I|o

f=ma T=rxf=oxl-0o+l-®



Rigid Body Simulation

RigidBody {
void Update(float time);
void ApplyForce(Vector3 &f,Vector3 &pos);
private:
// constants
float Mass;
Vector3 Rotlnertia; /' Ix, ly, & Iz from diagonal inertia

/Il variables
Matrix34 Mtx; /[ contains position & orientation
Vector3 Momentum,AngMomentum,

/[ accumulators
Vector3 Force, Torque;



Rigid Body Simulation

RigidBody::ApplyForce(Vector3 &f,Vector3 &pos) {
Force +=Tf;
Torgue += (pos-Mtx.d) x f

}



Rigid Body Simulation

RigidBody::Update(float time) {
// Update position
Momentum += Force * time;
Mtx.d += (Momentum/Mass) * time; // Mtx.d = position

/l Update orientation

AngMomentum += Torque * time;

Matrix33 | = Mtx:l,-Mtx" I A-1y-AT
Vectord w = I-1-L

float angle = |w| * time; // magnitude of w
Vector3 axis = w;

axis.Normalize();
Mtx.RotateUnitAxis(axis,angle);



