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Properties of the Cross Product
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Hat Operator

◼ We’ve introduced the ‘hat’ operator which converts a 

vector into a skew-symmetric matrix (ො𝐚𝑇 = −ො𝐚)

◼ This allows us to turn a cross product of two vectors into 

a dot product of a matrix and a vector

◼ This is mainly for algebraic convenience, as the dot 

product is associative (although still not commutative)

ො𝐚 ∙ 𝐛 = 𝐚 × 𝐛

ො𝐚 ∙ 𝐛 ≠ 𝐛 ∙ ො𝐚 (non commutative)

ො𝐚 ∙ መ𝐛 ∙ 𝐜 = ො𝐚 ∙ መ𝐛 ∙ 𝐜 (associative)



Derivative of a Rotating Vector

◼ Let’s say that vector r is rotating around the 

origin, maintaining a fixed distance

◼ At any instant, it has an angular velocity of ω
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Derivative of Rotating Matrix

◼ If matrix A is a rigid 3x3 matrix rotating with 

angular velocity ω

◼ This implies that the a, b, and c axes must be 

rotating around ω

◼ The derivatives of each axis are ωxa, ωxb, and 

ωxc, and so the derivative of the entire matrix is:
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Product Rule
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◼ The product rule defines the derivative of 

products



Product Rule

◼ It can be extended to vector and matrix products 

as well
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Eigenvalue Equation

◼



Symmetric Matrix

◼



Symmetric Matrix Diagonalization
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Dynamics of Particles



Kinematics of a Particle
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Mass, Momentum, and Force
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Moment of Momentum

◼ The moment of momentum is a vector

◼ Also known as angular momentum (the two terms mean 
basically the same thing, but are used in slightly different 
situations)

◼ Angular momentum has parallel properties with linear 
momentum

◼ In particular, like the linear momentum, angular 
momentum is conserved in a mechanical system

◼ It is typically represented with a capital L, which is 
unfortunately inconsistent with our standard of using 
lowercase for vectors…
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Moment of Momentum
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Moment of Momentum
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Moment of Force (Torque)

◼ The moment of force (or torque) about a 

point is the rate of change of the moment 

of momentum about that point

dt

dL
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Moment of Force (Torque)
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Rotational Inertia

◼ L=rxp is a general expression for the 

moment of momentum of a particle

◼ In a case where we have a particle 

rotating around the origin while keeping a 

fixed distance, we can re-express the 

moment of momentum in terms of it’s 

angular velocity ω



Rotational Inertia
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Rotational Inertia
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Rotational Inertia
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Rotational Inertia

◼ The rotational inertia matrix I is a 3x3 matrix that 
is essentially the rotational equivalent of mass

◼ It relates the angular momentum of a system to 
its angular velocity by the equation

◼ This is similar to how mass relates linear 
momentum to linear velocity, but rotation adds 
additional complexity

ωIL =

vp m=



Systems of Particles



Systems of Particles
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Velocity of Center of Mass
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Force on a Particle

◼ The change in momentum of the center of mass 

is equal to the sum of all of the forces on the 

individual particles

◼ This means that the resulting change in the total 

momentum is independent of the location of the 

applied force
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Systems of Particles
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◼ The total moment of momentum around 

the center of mass is:



Torque in a System of Particles
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Systems of Particles

◼ We can see that a system of particles behaves a lot like 

a particle itself

◼ It has a mass, position (center of mass), momentum, 

velocity, acceleration, and it responds to forces

◼ We can also define it’s angular momentum and relate a 

change in system angular momentum to a force applied 

to an individual particle

( ) = iicm frτ

= icm ff



Internal Forces

◼ If forces are generated within the particle system 
(say from gravity, or springs connecting 
particles) they must obey Newton’s Third Law 
(every action has an equal and opposite 
reaction)

◼ This means that internal forces will balance out 
and have no net effect on the total momentum of 
the system

◼ As those opposite forces act along the same line 
of action, the torques on the center of mass 
cancel out as well



Dynamics of Rigid Bodies



Kinematics of a Rigid Body

◼ For the position of the center of mass of the rigid 

body:
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Kinematics of a Rigid Body

◼



Rigid Bodies

◼ We treat a rigid body as a system of particles, where the 
distance between any two particles is fixed

◼ We will assume that internal forces are generated to 
hold the relative positions fixed. These internal forces 
are all balanced out with Newton’s third law, so that they 
all cancel out and have no effect on the total momentum 
or angular momentum

◼ The rigid body can actually have an infinite number of 
particles, spread out over a finite volume

◼ Instead of mass being concentrated at discrete points, 
we will consider the density as being variable over the 
volume



Rigid Body Mass

◼ With a system of particles, we defined the total 

mass as:

◼ For a rigid body, we will define it as the integral 

of the density ρ over some volumetric domain Ω
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Rigid Body Center of Mass

◼ The center of mass is:
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Rotational Inertia of a Particle
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Rigid Body Rotational Inertia
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Rigid Body Rotational Inertia

◼ The rigid body rotational inertia is a 3x3 symmetric matrix that 

encodes the distribution of mass around the center of mass

◼ It is calculated by calculating the integrals on the previous slide by 

integrating over the volume of the rigid body where r indicates the 

vector from the center of mass to the position of the volume 

integration element and ρ represents the density at that location

◼ These integrals can be calculated with analytical formulas for simple 

shapes like spheres, cylinders, and boxes

◼ There also exists an analytical technique for computing them on 

triangle meshes as well (Mirtich-Eberly algorithm)



Rotational Inertia Diagonalization
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Diagonalization of Rotational Inertia
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Rotational Inertia of a Box
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Rotational Inertia of a Sphere
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Rotational Inertia
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Derivative of Rotational Inertial

( )

( )

( )

( )

ωIIω
I

ωIIωωAIAIω
I

AωIAIω
I

AωIAAIAω
I

A
IAAI

AAIAI

ˆ

ˆˆ

ˆ

0

0

00

00
0

−=

+=+=

+=

+=









+=


=

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

TTT

T

TT

T

T
T



Derivative of Angular Momentum
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Newton-Euler Equations
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Applied Forces & Torques
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Properties of Rigid Bodies
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Rigid Body Simulation

RigidBody {

void Update(float time);

void ApplyForce(Vector3 &f,Vector3 &pos);

private:

// constants

float Mass;

Vector3 RotInertia; // Ix, Iy, & Iz from diagonal inertia

// variables

Matrix34 Mtx; // contains position & orientation

Vector3 Momentum,AngMomentum;

// accumulators

Vector3 Force,Torque;

};



Rigid Body Simulation

RigidBody::ApplyForce(Vector3 &f,Vector3 &pos) {

Force += f;

Torque += (pos-Mtx.d) x f

}



Rigid Body Simulation

RigidBody::Update(float time) {

// Update position

Momentum += Force * time;

Mtx.d += (Momentum/Mass) * time; // Mtx.d = position

// Update orientation

AngMomentum += Torque * time;

Matrix33 I = Mtx·I0·MtxT // A·I0·A
T

Vector3 ω = I-1·L

float angle = |ω| * time; // magnitude of ω

Vector3 axis = ω;

axis.Normalize();

Mtx.RotateUnitAxis(axis,angle);

}


