
Rigid Body Motion

Steve Rotenberg

CSE291: Physics Simulation

UCSD, Spring 2019

Cross Product

 xyyxzxxzyzzy

zyx

zyx

babababababa

bbb

aaa

−−−=

=

ba

kji

ba

Properties of the Cross Product

◼

Cross Product

 

zyxxzz

zxyxzy

zyyzxx

xyyxzxxzyzzy

bbabac

babbac

bababc

babababababa

++−=

−+=

+−=

=

−−−=

0

0

0

bac

ba

Cross Product



































−

−

−

=

















++−=

−+=

+−=

z

y

x

xy

xz

yz

z

y

x

zyxxzz

zxyxzy

zyyzxx

b

b

b

aa

aa

aa

c

c

c

bbabac

babbac

bababc

0

0

0

0

0

0

Cross Product

















−

−

−

=

=



































−

−

−

=

















0

0

0

ˆ

ˆ

0

0

0

xy

xz

yz

z

y

x

xy

xz

yz

z

y

x

aa

aa

aa

b

b

b

aa

aa

aa

c

c

c

a

baba

Hat Operator

◼ We’ve introduced the ‘hat’ operator which converts a

vector into a skew-symmetric matrix (ො𝐚𝑇 = −ො𝐚)

◼ This allows us to turn a cross product of two vectors into

a dot product of a matrix and a vector

◼ This is mainly for algebraic convenience, as the dot

product is associative (although still not commutative)

ො𝐚 ∙ 𝐛 = 𝐚 × 𝐛

ො𝐚 ∙ 𝐛 ≠ 𝐛 ∙ ො𝐚 (non commutative)

ො𝐚 ∙ መ𝐛 ∙ 𝐜 = ො𝐚 ∙ መ𝐛 ∙ 𝐜 (associative)

Derivative of a Rotating Vector

◼ Let’s say that vector r is rotating around the

origin, maintaining a fixed distance

◼ At any instant, it has an angular velocity of ω

rω
r

=
dt

d

rω 

r
ω

Derivative of Rotating Matrix

◼ If matrix A is a rigid 3x3 matrix rotating with

angular velocity ω

◼ This implies that the a, b, and c axes must be

rotating around ω

◼ The derivatives of each axis are ωxa, ωxb, and

ωxc, and so the derivative of the entire matrix is:

AωAω
A

== ˆ
dt

d

Product Rule

()

()
dt

dc
abc

dt

db
abc

dt

da

dt

abcd

dt

db
ab

dt

da

dt

abd

++=

+=

◼ The product rule defines the derivative of

products

Product Rule

◼ It can be extended to vector and matrix products

as well

()

()

()
dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

B
AB

ABA

b
ab

aba

b
ab

aba

+=


+=


+=


Eigenvalue Equation

◼

Symmetric Matrix

◼

Symmetric Matrix Diagonalization

◼

Dynamics of Particles

Kinematics of a Particle

onaccelerati

ity veloc

position

2

2

dt

d

dt

d

dt

d

xv
a

x
v

x

==

=

Mass, Momentum, and Force

force

momentum

mass

a
p

f

vp

m
dt

d

m

m

==

=

Moment of Momentum

◼ The moment of momentum is a vector

◼ Also known as angular momentum (the two terms mean
basically the same thing, but are used in slightly different
situations)

◼ Angular momentum has parallel properties with linear
momentum

◼ In particular, like the linear momentum, angular
momentum is conserved in a mechanical system

◼ It is typically represented with a capital L, which is
unfortunately inconsistent with our standard of using
lowercase for vectors…

prL =

Moment of Momentum

prL =

p

1r

2r3r

p
p

◼ L is the same for all three of these particles

•

•

•

Moment of Momentum

prL =

p

1r
2r

3r

p

p

◼ L is different for all of these particles

•

•

•

Moment of Force (Torque)

◼ The moment of force (or torque) about a

point is the rate of change of the moment

of momentum about that point

dt

dL
τ =

Moment of Force (Torque)

()

frτ

frvvτ

frpvτ

p
rp

rL
τ

prL

=

+=

+=

+==

=

m

dt

d

dt

d

dt

d

Rotational Inertia

◼ L=rxp is a general expression for the

moment of momentum of a particle

◼ In a case where we have a particle

rotating around the origin while keeping a

fixed distance, we can re-express the

moment of momentum in terms of it’s

angular velocity ω

Rotational Inertia

()
() ()

rrI

ωIL

ωrrL

ωrrrωrL

vrvrL

prL

ˆˆ

ˆˆ

−=

=

−=

−==

==

=

m

m

mm

mm

Rotational Inertia

















−−

−−

−−

−=

















−

−

−



















−

−

−

−=

−=

22

22

22

0

0

0

0

0

0

ˆˆ

yxzyzx

zyzxyx

zxyxzy

xy

xz

yz

xy

xz

yz

rrrrrr

rrrrrr

rrrrrr

m

rr

rr

rr

rr

rr

rr

m

m

I

I

rrI

Rotational Inertia

()
()

()

ωIL

I

=

















+−−

−+−

−−+

=
22

22

22

yxzyzx

zyzxyx

zxyxzy

rrmrmrrmr

rmrrrmrmr

rmrrmrrrm

Rotational Inertia

◼ The rotational inertia matrix I is a 3x3 matrix that
is essentially the rotational equivalent of mass

◼ It relates the angular momentum of a system to
its angular velocity by the equation

◼ This is similar to how mass relates linear
momentum to linear velocity, but rotation adds
additional complexity

ωIL =

vp m=

Systems of Particles

Systems of Particles

momentum tal to

mass ofcenter ofposition

particles all of mass l tota
1








==

=

=
=

iiicm

i

ii

cm

n

i

itotal

m

m

m

mm

vpp

x
x

Velocity of Center of Mass

cmtotalcm

total

cm
cm

i

ii

i

i
i

cm

i

iicm
cm

m

m

m

m

m

dt

d
m

m

m

dt

d

dt

d

vp

p
v

v
x

v

xx
v

=

=

==

==











Force on a Particle

◼ The change in momentum of the center of mass

is equal to the sum of all of the forces on the

individual particles

◼ This means that the resulting change in the total

momentum is independent of the location of the

applied force

i

iicm

icm

dt

d

dt

d

dt

d






===

=

f
ppp

pp

Systems of Particles

()


−=

=

icmicm

iicm

pxxL

prL

◼ The total moment of momentum around

the center of mass is:

Torque in a System of Particles

()

()







=


=


==

=

iicm

ii

cm

iicm
cm

iicm

dt

d

dt

d

dt

d

frτ

pr
τ

prL
τ

prL

Systems of Particles

◼ We can see that a system of particles behaves a lot like

a particle itself

◼ It has a mass, position (center of mass), momentum,

velocity, acceleration, and it responds to forces

◼ We can also define it’s angular momentum and relate a

change in system angular momentum to a force applied

to an individual particle

() = iicm frτ

= icm ff

Internal Forces

◼ If forces are generated within the particle system
(say from gravity, or springs connecting
particles) they must obey Newton’s Third Law
(every action has an equal and opposite
reaction)

◼ This means that internal forces will balance out
and have no net effect on the total momentum of
the system

◼ As those opposite forces act along the same line
of action, the torques on the center of mass
cancel out as well

Dynamics of Rigid Bodies

Kinematics of a Rigid Body

◼ For the position of the center of mass of the rigid

body:

2

2

dt

d

dt

d

dt

d

cmcm
cm

cm
cm

cm

xv
a

x
v

x

==

=

Kinematics of a Rigid Body

◼

Rigid Bodies

◼ We treat a rigid body as a system of particles, where the
distance between any two particles is fixed

◼ We will assume that internal forces are generated to
hold the relative positions fixed. These internal forces
are all balanced out with Newton’s third law, so that they
all cancel out and have no effect on the total momentum
or angular momentum

◼ The rigid body can actually have an infinite number of
particles, spread out over a finite volume

◼ Instead of mass being concentrated at discrete points,
we will consider the density as being variable over the
volume

Rigid Body Mass

◼ With a system of particles, we defined the total

mass as:

◼ For a rigid body, we will define it as the integral

of the density ρ over some volumetric domain Ω




= dm 


=

=
n

i

imm
1

Rigid Body Center of Mass

◼ The center of mass is:







=

d

d
cm



x
x

Rotational Inertia of a Particle

◼

Rigid Body Rotational Inertia

()
()

()

















=



















+−−

−+−

−−+

=





zzyzxz

yzyyxy

xzxyxx

yxzyzx

zyzxyx

zxyxzy

III

III

III

drrdrrdrr

drrdrrdrr

drrdrrdrr

I

I

22

22

22







Rigid Body Rotational Inertia

◼ The rigid body rotational inertia is a 3x3 symmetric matrix that

encodes the distribution of mass around the center of mass

◼ It is calculated by calculating the integrals on the previous slide by

integrating over the volume of the rigid body where r indicates the

vector from the center of mass to the position of the volume

integration element and ρ represents the density at that location

◼ These integrals can be calculated with analytical formulas for simple

shapes like spheres, cylinders, and boxes

◼ There also exists an analytical technique for computing them on

triangle meshes as well (Mirtich-Eberly algorithm)

Rotational Inertia Diagonalization

◼

Diagonalization of Rotational Inertia

◼

Rotational Inertia of a Box

◼

Rotational Inertia of a Sphere

◼

Rotational Inertia

◼

Derivative of Rotational Inertial

()

()

()

()

ωIIω
I

ωIIωωAIAIω
I

AωIAIω
I

AωIAAIAω
I

A
IAAI

AAIAI

ˆ

ˆˆ

ˆ

0

0

00

00
0

−=

+=+=

+=

+=









+=


=

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

TTT

T

TT

T

T
T

Derivative of Angular Momentum

()

ωIωIωτ

ωIωωIωIωτ

ωIωωIIωτ

ω
Iω

IL
τ

ωIL

+=

+−=

+−=

+==

=

ˆ

ˆ

dt

d

dt

d

dt

d

Newton-Euler Equations

ωIωIωτ

af

+=

= m

Applied Forces & Torques

()

()ωIωτIω

fa

frτ

ff

−=

=

=

=

−





1

1

m

iicg

icg

Properties of Rigid Bodies

af

vp

a

v

x

m

m

m

=

=

ωIωIωfrτ

ωIL

ω

ω

A

I

+==

=

Rigid Body Simulation

RigidBody {

void Update(float time);

void ApplyForce(Vector3 &f,Vector3 &pos);

private:

// constants

float Mass;

Vector3 RotInertia; // Ix, Iy, & Iz from diagonal inertia

// variables

Matrix34 Mtx; // contains position & orientation

Vector3 Momentum,AngMomentum;

// accumulators

Vector3 Force,Torque;

};

Rigid Body Simulation

RigidBody::ApplyForce(Vector3 &f,Vector3 &pos) {

Force += f;

Torque += (pos-Mtx.d) x f

}

Rigid Body Simulation

RigidBody::Update(float time) {

// Update position

Momentum += Force * time;

Mtx.d += (Momentum/Mass) * time; // Mtx.d = position

// Update orientation

AngMomentum += Torque * time;

Matrix33 I = Mtx·I0·MtxT // A·I0·A
T

Vector3 ω = I-1·L

float angle = |ω| * time; // magnitude of ω

Vector3 axis = ω;

axis.Normalize();

Mtx.RotateUnitAxis(axis,angle);

}

