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Transport Equations

• Advection:
𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠

• Convection:
𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯

• Diffusion:
𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠

• Viscosity:
𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯

• Pressure:
𝑑𝐯

𝑑𝑡
= −𝛻𝑝



Navier-Stokes Equation

• The incompressible Navier-Stokes equation describes the forces on 
a fluid as the sum of convection, viscosity, and pressure terms:

𝜕𝐯

𝜕𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 −𝛻𝑝

• In addition, we also have the incompressibility constraint:

𝛻 ∙ 𝐯 = 0

• As discussed in the previous lecture, these are formulated from the 
point of view of a fixed point in space (Eulerian frame of reference)



Lagrangian Approach

• In the Lagrangian approach, we formulate the Navier-Stokes equation 
from the point of view of a particle moving along with the fluid

• The pressure and viscosity terms don’t change, but the convection term 
goes away entirely

𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯 −𝛻𝑝

• The paper also adds a term for externally applied forces as well as a Τ1 𝜌
term to account for the fact that the particle based methods will have 
some variation in density

𝑑𝐯𝑖
𝑑𝑡

= 𝜇𝛻2𝐯𝑖 −
1

𝜌𝑖
𝛻𝑝𝑖 +

𝐟𝑖
𝑚𝑖



Particle-Based Fluids



Grid-Based Methods

• Fluid dynamics has traditionally been simulated on 
uniform grids or irregular meshes

• These techniques are good for engineering applications 
due to their potential for high accuracy

• They are effective in computer graphics uses as well, 
particularly for smoke and simulations of airflows

• However, it is very difficult to handle fluid interfaces 
(such as the water-air boundary) and complex 
splashing situations, which are the situations one often 
wants in entertainment applications



Smooth Particle Hydrodynamics

• Particle based fluid simulation is often referred to as 
smooth particle hydrodynamics or SPH

• Some of the original work was done for simulating 
galactic gas dynamics by astrophysicists

• The technique was introduced to the computer 
graphics community around 2003

• In recent years, advances in the techniques as well as 
increases in GPU computational power have made 
large-scale SPH simulations possible

• The technique has proven very effective, especially for 
simulating very dynamic situations with lots of 
splashing and interaction with complex surfaces



SPH Fluids in Computer Graphics

• We will follow the paper “SPH Fluids in Computer Graphics”
• Authors: Markus Ihmsen, Jens Orthmann, Barbara 

Solenthaler, Andreas Kolb, Matthias Teschner
• This was a ‘State of The Art Report’ (STAR) published in 

Eurographics 2014, and it summarizes much of the 
development on the subject that had been done in the 
previous 10 years

• This is a great overview of the subject and the important 
issues, and with lots of other great references in the 
bibliography

• Many of the formulas in these slides come from the paper 
as well as a few quoted statements



Field Representation

• We saw that scalar and vector fields can be represented by 
grids or meshes by sampling the field at the grid points and 
interpolating the values in between

• Alternately can use a meshless set of irregularly spaced 
particles to represent a field

• Rather than being a 0 dimensional point, a particle is 
thought of as being smeared out over some small radius

• The maximum radius of influence for a particle is called the 
support radius

• The particles have to be close enough together so that they 
effectively cover all of the domain of interest, and often 
they are arranged so that every point in the domain is 
overlapped by several particles (maybe around 3-10)



Field Representation

• Each particle 𝑖 represents a small sample of 
the fluid so it will have a mass 𝑚𝑖, position 𝐱𝑖, 
and velocity 𝐯𝑖

• We will also compute various properties per 
particle such as the local density 𝜌𝑖, pressure 
𝑝𝑖, or volume 𝑉𝑖



Kernel Function

• We define a kernel function W() that represents 
the strength of a particle’s influence as a function 
of the distance from the particle

• At the support radius, we expect W() to go to 0 
and smoothly increase to 1 as we get closer to 
the particle

• There have been many kernel functions 
proposed, and we will look at the one used in the 
paper



Kernel Function
• “A quantity 𝐴𝑖 at arbitrary position 𝐱𝑖 is approximately computed with a set of 

known quantities 𝐴𝑗 at neighboring particle positions 𝐱𝑗”
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Kernel Function

𝑊𝑖𝑗 = 𝑊
𝐱𝑖 − 𝐱𝑗

ℎ
= 𝑊 𝑞 =

1

ℎ𝑑
𝑓 𝑞

• The value d is the number of dimensions
• The value h is the smoothing radius, which is not the 

same as the support radius
• The particle spacing is typically close to h
• From examining the equations, one can see that the 

support radius is 2h in the example from the paper, but 
they mention it may vary from h to 3h depending on 
choice of kernel function f()



Derivative Computation

• When using uniform grids, we were able to easily compute various spatial 
derivatives by using finite differencing

• With particles, the irregular spacing makes derivative computation a little more 
tricky and several approaches have been used in the literature

• The paper uses the following:
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Derivative Computation

• Notice that all of the derivatives involve summing 
over j, which is the set of nearby particles within 
the support radius

• In order to do the calculations, every particle 
must determine which particles are nearby

• This can be problematic when you are dealing 
with millions of particles, and so special data 
structures are required to make this neighbor 
search fast

• We will look at those in a little bit



Kernel Gradient

• All of the derivatives require computing 𝛻𝑊𝑖𝑗, the spatial 
gradient of the Kernel function

• However, the paper doesn’t actually mention how to
compute this

• As 𝑊𝑖𝑗 is a radially symmetric function that increases as we 
get closer to the center, we would expect that the gradient 
will be a vector pointing towards the center

• The magnitude of the vector will be equal to the magnitude 
of the derivative of the Kernel function:
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Equations of Motion

• SPH uses the Lagrangian form of the Navier-Stokes 
equation:

𝑑𝐯𝑖
𝑑𝑡

= 𝜇𝛻2𝐯𝑖 −
1

𝜌𝑖
𝛻𝑝𝑖 +

𝐟𝑖
𝑚𝑖

• This is computed for each particle and then integrated 
using the standard forward Euler method of integration 
that we’ve been using for other particle systems

• Note that it requires a density 𝜌 and pressure p to be 
calculated first and the paper has a couple different 
methods to do that depending on the specific approach



Algorithm

• The paper presents 4 different algorithms for SPH simulation
• They are all similar and effectively try to calculate the same thing, 

but they use different computational approaches and don’t produce 
the exact same results

• The main difference between the approaches involves the exact 
order that things are done and how the incompressibility constraint 
is handled

• Most methods allow for some compression, but some of the better 
approaches attempt to enforce incompressibility using iterative 
approaches or solutions to large systems of equations

• In general, the more sophisticated methods require more time to 
compute a single time step, but run more stable and can handle 
larger time steps

• The result is that usually the more sophisticated approaches will 
outperform the simpler approaches in real world use cases



Integration & Time Steps

• We need small time steps to keep things stable, but 
ideally we could use larger time steps if things aren’t 
moving as quickly

• We can therefore consider adapting the time step over 
time based on what is happening in the simulation

• It is common to base this off of the Courant-Friedrichs-
Lewy (CFL) condition that limits the time step so that 
the fastest particle doesn’t move more than some 
portion of it’s smoothing radius:

∆𝑡 ≤ 𝜆
ℎ

𝐯𝑚𝑎𝑥 with 𝜆 ≈ 0.4



Divergence Free SPH

• “Divergence-Free SPH for Incompressible and 
Viscous Fluids”, Bender, Koschier, 2015

• This paper introduces a nice method for SPH 
that enforces zero divergence

• This leads to improved stability and visual 
quality

• They also introduce an implicit viscosity solver 
which allows for simulation of highly viscous
fluids



Spatial Hash Tables



Neighbor Search

• The physics equations per particle are relatively fast to compute, as 
they mainly involve multiplication and addition with very little 
division, no trig functions, and no real exponentials

• One of the most expensive parts of the physics simulation in SPH is 
actually the search for the nearest neighbors for each particle

• To calculate the derivatives, every particle needs to know which 
particles are within its support radius

• If there are N particles, and every particle could potentially be a 
neighbor to every other particle, the search is inherently 𝑂 𝑁2

which gets extremely expensive as N gets high (which it will!)
• With the right choice of data structures however, we can reduce the 

neighbor search for a single particle to constant time, making the 
overall search linear or 𝑂 𝑁



Uniform Grids

• We could use a grid structure to optimize our neighbor search by storing a 
list of particles in each grid cell

• The spacing of the grid cells is set to the support radius of the particles so 
that all of a particles neighbors will be within one grid cell away

• To search for neighbors, each particle would loop through the 3x3x3 set of 
nearby cells

• The physics will limit the maximum number of particles per cell with the 
pressure force

• Therefore, the neighbor search for a single particle is constant, as it 
requires checking 27 cells that will each contain roughly the same number 
of particles

• The two big problems with grids is the fact that they have a limited size, 
putting a range on how far our particles can move, and that they take up a 
lot of memory to account for all of the unoccupied cells. If we try to 
increase the range our particles can move, we need to increase the grid 
size, causing a very large memory penalty



Spatial Hash Table

• A spatial hash table is a wonderful data 
structure that has all of the advantages of 
uniform grids and doesn’t suffer from the 
memory or range limitations

• It is effectively a virtual grid that extends 
infinitely in every direction, but we only store 
data for occupied cells, making unoccupied 
cells totally free



Spatial Hash Table

• A spatial hash table operates very much like a standard hash table, 
where a hashing function maps some key (like a string) to an 
integer, which is then mod’ed into an array of slots. Items can be 
added, removed, or accessed through the table in constant time

• The spatial hash table is essentially the same thing, but it uses a 3D 
position to map to a grid cell which is then hashed into the table

• The table stores occupied cells, each of which may contain several 
particles, but will be limited to some maximum number due to the 
physics

• If more than one occupied cell maps to the same table entry, then 
the table entry can simply contain a linked list of cells. In practice, if 
the table size is anywhere near the number of particles, then this 
will happen very rarely

• The paper refers to a ‘compact hashing’ scheme that uses some 
additional tricks to keep the memory size manageable



Hash Function

• A point in infinite space is mapped into a finite list 
of cells using a hash function such as:

𝑐 =
𝑥

𝑑
∙ 𝑝1 xor

𝑦

𝑑
∙ 𝑝2 xor

𝑧

𝑑
∙ 𝑝3 %𝑚

• With d being the cell spacing, m the hash table 
size, and 𝑝1, 𝑝2, and 𝑝3 being large prime 
numbers such as 73856093, 19349663, and 
83492791



Rendering



SPH Rendering

• Now that we can simulate water with SPH and can do the calculations efficiently, 
we turn to the subject of rendering

• Rendering a smooth surface from a set of particles is challenging, and one of the 
more common criticisms of the technique is its inability to handle calm smooth 
water surfaces

• But who wants to simulate calm smooth water surfaces anyway?
• Actually, modern surface extraction techniques do a pretty good job at this, but 

one can still often spot bumpy visual artefacts in SPH renderings
• The paper describes 4 overall approaches to rendering SPH simulations:

– Extract a polygonal surface and render that through standard techniques
– Render each surface particle individually as some kind of splat
– Use a ‘screen-space’ technique to render the pixels the contain the water surface
– Use a volumetric rendering technique

• Surface extraction is more common for high quality renderings, and splat based 
and screen-space techniques tend to be more appropriate for real time rendering



Marching Cubes

• Most surface extraction techniques are based on the marching cubes 
algorithm or some variation of it

• With this approach, we first create a virtual grid around our particles 
where the grid size is a little smaller than the particle radius

• We then evaluate a ‘distance’ or ‘density’ type function on this grid, where 
each point computes some density value based on the particle nearby

• The surface is implicitly defined as being the set of points where the 
density value is some constant (i.e., an isosurface). An isosurface is a 3D 
version of the 2D isocurves one finds on a topographic map

• To find the surface, we loop through each cell and examine the 8 values on 
the corners of the cell. If some of the values of the cell are above the 
isosurface value and some are below, then we know that the surface 
passes through the cell. We then triangulate that small section of the 
surface and repeat for all cells



Marching Cubes



Marching Cubes



Marching Cubes

• In this example, we use marching cubes to triangulate the water-air 
interface. One can get good results by using a sufficiently high resolution 
and using a very carefully designed distance/density function, referred to 
in the paper

• However, marching cubes is a very powerful technique for visualizing 3D 
fields of all sorts. It is used throughout scientific visualization to view all 
things such as electromagnetic fields, quantum wave functions, 
gravitational fields, stress fields, MRI scan data, and more



Anisotropic Kernels

• “Reconstructing Surfaces of Particle-Based Fluids 
Using Anisotropic Kernels”, Yu, Turk, 2010

• This paper introduces a nice technique for 
generating a high quality surface based on SPH 
particles

• Instead of using a typical isotropic kernel (like a 
spherical function around each particle), they use 
an anisotropic kernel, where each particle’s shape 
is based on the distribution of nearby particles

• This is triangulated with the marching cubes 
algorithm to produce the final surface



Anisotropic Kernels



SPH Extensions



SPH Extensions

• Surface tension: There are some good models for surface tension that can be added to the 
force computation. These will improve the behavior of small scale phenomena such as sheet 
breakup, and spherical drop formation

• Two-scale simulation: A common extension to SPH is to do a two level simulation where the 
first (course) level has does a full physics simulation on a smaller number of particles (say 
500,000) and then the second (fine) level simply advects a large number of surface particles 
(maybe 5 million) through the velocity field calculated from the course scale. This allows 
efficient physics computation plus high visual detail at the surface where it is needed

• Adaptive particles: It’s nice to have lots of small particles in areas where we need them such 
as around splashes. However, for slower moving areas of the fluid, it is inefficient to use tons 
of tiny particles. Adaptive schemes use particles of varying sizes that adapt automatically to 
the flow complexity. In other words, they will use large particles where the flow is smooth 
and the large particles will automatically subdivide into smaller particles as things get more 
dynamic. Likewise, small particles will coalesce into bigger particles where the flow slows 
down. Note that this applies to purely the physical simulation of the particles, and so this 
method is different, yet compatible with the two-scale method described above



SPH Extensions

• Foam, spray, & bubbles: One can also support special particles to represent foam 
on the water surface, spray of fine scale droplets in the air, and air bubbles under 
the surface. These particles are created in places where there are violent 
interactions between water particles near the air-water surface. This method 
dramatically improves the visual quality of crashing waves and large splashing 
scenes

• Interaction with solids, cloth: water particles can interact with solid objects like 
dynamic rigid bodies, or deformable elastic bodies such as cloth. A common 
approach is to create a bunch of virtual particles along the surface of the solid 
objects that interact with the water particles just like any other particle. The forces 
applied to the virtual particles are passed through to the rigid or elastic bodies to 
allow for two-way interaction between fluids and solids

• High viscosity: when we increase the fluid viscosity substantially, the fluid starts to 
behave more and more like a solid. When combined with non-Newtonian viscosity, 
we can get fluids that can hold a solid shape such as clay or toothpaste



SPH Extensions

• Solid mechanics: if we take high viscosity to an extreme, we can 
actually model deformable solid objects as well, such as rubber, 
metals, and more. Behaviors such as elasticity, plasticity, and 
fracture can be included

• Phase changes: if we can model both liquids and solids with SPH, 
then we can model phase changes such as melting, freezing, 
boiling, and condensation

• Granular materials: SPH has been extended to handle physics of 
granular materials like sand. Sand moves in a very fluid way, but 
requires some additional static friction behaviors that allow it to 
form piles. Also, as with water, one can use two-scale techniques 
where sand it modeled at a course level and then rendered at a 
finer scale



Implementation Notes

• To implement SPH, I suggest starting with method 1 from the paper
• I’d suggest starting with a relatively small number of particles

(around 100) and using a brute force neighbor search to start off
• Pay attention to units. Don’t just use arbitrary constants in the 

equations- try to base them off of some sensible values
• Set the particle mass based on the particle radius and fluid density, 

and set initial particle spacing based on the desired density
• I’d suggest starting with 0 viscosity and just get the pressure forces 

working first
• Also, I suggest confining the simulation to a small box to keep it 

from going everywhere. I suggest using a linear force-distance 
relationship at the boundaries instead of a hard boundary. This will 
keep particles from sticking to the boundaries

• Once you get the basic physics working, you can add viscosity, 
spatial hash tables, surface tension, and other forces


