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Fluid Dynamics

• Fluid dynamics refers to the physics of fluid motion
• The Navier-Stokes equation describes the motion of fluids 

and can appear in many forms
• Note that ‘fluid’ can mean both liquids and gasses, as both 

are described by the same equations
• Computational fluid dynamics (CFD) refers to the large body 

of computational techniques involved in simulating fluid 
motion. CFD is used extensively in engineering for 
aerodynamic design and analysis of vehicles and other 
systems. Some of the techniques have been borrowed by 
the computer graphics community

• We can use fluid dynamics to simulate smoke, fire, water, 
liquids, viscous fluids, and even semi-solid materials



Fields

• A field is a function of position x and 
may vary over time t

• A scalar field such as s(x,t) assigns a 
scalar value to every point in space.   
A good example of a scalar field would 
be the temperature in a room

• A vector field such as v(x,t) assigns a 
vector to every point in space. An 
example of a vector field would be the 
velocity of the air



Del Operations

• Del: 𝛻 =
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𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝑇

• Divergence: 𝛻 ∙ 𝐯 =
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• Laplacian: 𝛻2𝑠 =
𝜕2𝑠

𝜕𝑥2
+
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𝜕𝑦2
+
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Frame of Reference

• When describing fluid motion, it is important to be consistent with the frame of 
reference

• In fluid dynamics, there are two main ways of addressing this
• With the Eulerian frame of reference, we describe the motion of the fluid from 

some fixed point in space
• With the Lagrangian frame of reference, we describe the motion of the fluid from 

the point of view moving with the fluid itself
• Eulerian simulations typically use a fixed grid or similar structure and store 

velocities at every point in the grid
• Lagrangian simulations typically use particles that move with the fluid itself. 

Velocities are stored on the particles that are irregularly spaced throughout the 
domain

• We will stick with an Eulerian point of view today, but we will look at Lagrangian
methods in the next lecture when we discuss particle based fluid simulation

• Note: we can also use the arbitrary Lagrangian-Eulerian (ALE) frame of reference, 
which is a mix between the two. This is sometimes used in solid simulations with 
very large plastic deformations



Velocity Field

• We will describe the equations of motion for a basic incompressible fluid 
(such as air or water)

• To keep it simple, we will assume uniform density and temperature
• The main field that we are interested in therefore, is the velocity 𝐯 𝐱, 𝑡
• We assume that our field is defined over some domain (such as a 

rectangle or box) and that we have some numerical representation of the 
field (such as a uniform grid of velocity vectors)

• We will effectively be applying Newton’s second law by computing a force 
everywhere on the grid, and then converting it to an acceleration by 𝐟 =
𝑚𝐚, however, as we are assuming uniform density (mass/volume), then 
the m term is always constant, and we can assume that it is just 1.0

• Therefore, we are really just interested in computing the acceleration 
𝑑𝐯

𝑑𝑡
at 

every point on the grid



Transport Operations



Transport Equations

• In order to understand the equations of fluid 
dynamics, we will first look at some simpler 
examples of transport equations as well as some 
related concepts:
– Advection

– Convection

– Diffusion

– Viscosity

– Pressure gradient

– Incompressibility



Advection

• Advection is the transport of a fluid property through the macroscopic 
motion of the fluid itself (i.e., through the velocity field v)

• Let us assume that we have a velocity vector field v(x,t) and we have a 
scalar field s(x,t) that represents some scalar quantity that is being 
transported through the velocity field

• For example, v might be the velocity of air in the room and s might be 
temperature, or the concentration of some pigment or smoke, etc.

• As the fluid moves around, it will transport the scalar field with it. We say 
that the scalar field is advected by the fluid

• The advection equation specifies a scalar field 
𝑑𝑠

𝑑𝑡
which is the rate of 

change of the scalar field s that is being advected by the velocity field v:

𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠



Advection

• Remember that the gradient 𝛻𝑠 of a scalar field 𝑠 is a 
vector field pointing in the direction that 𝑠 is 
increasing

• The advection is the rate of change of 𝑠 at a fixed 
location based on the gradient 𝛻𝑠 and the velocity 𝐯

𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠 𝛻𝑠 𝐯



Advection
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Advection

• Let’s say our scalar field s represents ‘redness’

• The gradient 𝛻𝑠 is in units of redness/meter

• The velocity 𝐯 is in units of meters/second

• The advection 
𝑑𝑠

𝑑𝑡
is in units of redness/second

𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠 𝛻𝑠 𝐯



Convection

• The velocity field v describes the movement of the fluid down to 
the molecular level

• Therefore, all properties of the fluid at a particular point should be 
advected by the velocity field

• This includes the property of velocity itself!
• The advection of velocity through the velocity field is called 

convection

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯

• Remember that dv/dt is an acceleration, and since f=ma, we are 
really describing a force



Convection

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯

• Convection is the transport of velocity by the velocity field
• In other words, it just carries the motion of the fluid 

forward by Newton’s First Law (a body in motion will stay in 
motion and a body at rest will stay at rest unless acted 
upon by some force)

• It is a fundamental property of fluids and must be present 
in some form in order for a fluid to be physically valid

• By itself, it represents the behavior of a hypothetical fluid 
made up of particles that never collide with each other



Diffusion

• In real fluids, however, particles do collide with each other
• Lets say that we put a drop of red food coloring in a motionless (v=0

everywhere) water tank. Due to random molecular motion, the red 
color will still gradually diffuse throughout the tank until it reaches 
equilibrium

• This is known as a diffusion process and is described by the 
diffusion equation

𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠

• The constant k describes the rate of diffusion
• Heat diffuses through solids and fluids through a similar process 

and is described by a diffusion equation



Diffusion

𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠

• By itself, diffusion causes a gradual 
blurring of a scalar field over time



Second Derivatives

• Remember that the Laplacian operator 𝛻2 is a 
type of spatial second derivative

• A positive Laplacian indicates that the 
surrounding field is higher on average and a 
negative Laplacian indicates it is lower

• This is the essence of the diffusion process. If the 
surrounding field is higher (or lower) in some 
value, it will cause the value to increase (or 
decrease) towards the average

• This will gradually lead to an averaging out of the 
field over time



Viscosity

• Viscosity is the diffusion of velocity in a fluid and is described by a 
diffusion equation as well:

𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯

• The constant 𝜇 is the coefficient of viscosity and describes how 
viscous the fluid is. Air and water have low values, whereas 
something like syrup would have a relatively higher value

• Some materials like modeling clay or silly putty are extremely 
viscous fluids and can behave similar to solids

• Like convection, viscosity is a force. It resists relative motion and 
tries to smooth out the velocity field



Pressure Gradient

• Fluids flow from high pressure regions to low 
pressure regions in the opposite direction of the 
pressure gradient

𝑑𝐯

𝑑𝑡
= −𝛻𝑝

• The difference in pressure acts as a force in the 
direction from high to low (thus the minus sign)



Transport Equations

• Advection:
𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠

• Convection:
𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯

• Diffusion:
𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠

• Viscosity:
𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯

• Pressure:
𝑑𝐯

𝑑𝑡
= −𝛻𝑝



Finite Difference Transport 
Equations



Finite Difference Spatial Derivatives

• In the previous lecture, we learned about the 
spatial derivative operators and how to 
generate finite difference approximations on 
uniform grids

𝑠𝑖𝑗𝑘 𝑠𝑖+1𝑗𝑘𝑠𝑖−1𝑗𝑘

𝑠𝑖𝑗+1𝑘

𝑠𝑖𝑗−1𝑘

𝑠𝑖𝑗𝑘−1

𝑠𝑖𝑗𝑘+1



Finite Difference Operations

• Gradient: 𝛻𝑠 ≈
1

2ℎ

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘
𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘
𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

• Divergence: 𝛻 ∙ 𝐯 ≈
1

2ℎ
𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗+1𝑘 − 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1

• Curl: 𝛻 × 𝐯 ≈
1

2ℎ

𝑣𝑧𝑖𝑗+1𝑘 − 𝑣𝑧𝑖𝑗−1𝑘 − 𝑣𝑦𝑖𝑗𝑘+1 − 𝑣𝑦𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1 − 𝑣𝑧𝑖+1𝑗𝑘 − 𝑣𝑧𝑖−1𝑗𝑘

𝑣𝑦𝑖+1𝑗𝑘 − 𝑣𝑦𝑖−1𝑗𝑘 − 𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘

• Laplacian: 𝛻2𝑠 ≈
1

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘



Finite Difference Transport Equations

• We can use the same process to generate 
finite difference versions of the transport 
equations as well



Finite Differencing Gradients

• In the previous lecture, we looked at representing fields on 
uniform grids and computing spatial derivatives using finite 
differencing

• We saw that we can finite difference the gradient operator 
on a scalar field 𝑠 with:

𝛻𝑠 ≈
1

2ℎ

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘
𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘
𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

• Where 𝑠𝑖𝑗𝑘 is the value of 𝑠 at grid cell 𝑖𝑗𝑘 and ℎ is the 
spacing between cells



Finite Differencing Advection

• To finite difference the advection −𝐯 ∙ 𝛻𝑠, we just compute the 
gradients 𝛻𝑠 and compute the dot product with the velocity 𝐯𝑖𝑗𝑘

𝛻𝑠 ≈
1

2ℎ

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘
𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘
𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

−𝐯 ∙ 𝛻𝑣𝑥 ≈

−1

2ℎ
𝑣𝑥𝑖𝑗𝑘 𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘 𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1



Finite Differencing Convection

• To finite difference the convection −𝐯 ∙ 𝛻𝐯, we just compute 3 scalar gradients 𝛻𝑣𝑥, 𝛻𝑣𝑦, and 𝛻𝑣𝑧
separately and compute the dot product of each of them with the velocity 𝐯𝑖𝑗𝑘

𝛻𝑣𝑥 ≈
1

2ℎ

𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘
𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘
𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1

−𝐯 ∙ 𝛻𝑣𝑥 ≈
−1

2ℎ
𝑣𝑥𝑖𝑗𝑘 𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘

𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1

−𝐯 ∙ 𝛻𝐯 ≈
−1

2ℎ

𝑣𝑥𝑖𝑗𝑘 𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘
𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘 𝑣𝑦𝑖+1𝑗𝑘
− 𝑣𝑦𝑖−1𝑗𝑘

+ 𝑣𝑦𝑖𝑗𝑘
𝑣𝑦𝑖𝑗+1𝑘

− 𝑣𝑦𝑖𝑗−1𝑘
+ 𝑣𝑧𝑖𝑗𝑘 𝑣𝑦𝑖𝑗𝑘+1

− 𝑣𝑦𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘 𝑣𝑧𝑖+1𝑗𝑘 − 𝑣𝑧𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘
𝑣𝑧𝑖𝑗+1𝑘 − 𝑣𝑧𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1



Finite Differencing Laplacians

• In the previous lecture, we looked at how to 
compute the Laplacian 𝛻2 of a scalar field 𝑠 on 
a uniform 3D grid using finite differencing:

𝛻2𝑠 ≈
1

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘



Finite Differencing Diffusion

• Diffusion can be finite differenced easily by 
taking the Laplacian and just multiplying by 
the diffusion coefficient 𝑘:

𝑘𝛻2𝑠 ≈
𝑘

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘



Finite Differencing Viscosity

• To finite difference the viscosity term 𝜇𝛻2𝐯, 
we just compute the Laplacian for each of the 
components of 𝐯

𝛻2𝑣𝑥 ≈
1

ℎ2
𝑣𝑥𝑖+1𝑗𝑘 + 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑥𝑖𝑗+1𝑘 + 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑥𝑖𝑗𝑘+1 + 𝑣𝑥𝑖𝑗𝑘−1 − 6𝑣𝑥𝑖𝑗𝑘

𝜇𝛻2𝐯 ≈
𝜇

ℎ2

𝑣𝑥𝑖+1𝑗𝑘 + 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑥𝑖𝑗+1𝑘 + 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑥𝑖𝑗𝑘+1 + 𝑣𝑥𝑖𝑗𝑘−1 − 6𝑣𝑥𝑖𝑗𝑘
𝑣𝑦𝑖+1𝑗𝑘 + 𝑣𝑦𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗+1𝑘 + 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑦𝑖𝑗𝑘+1 + 𝑣𝑦𝑖𝑗𝑘−1 − 6𝑣𝑦𝑖𝑗𝑘
𝑣𝑧𝑖+1𝑗𝑘 + 𝑣𝑧𝑖−1𝑗𝑘 + 𝑣𝑧𝑖𝑗+1𝑘 + 𝑣𝑧𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘+1 + 𝑣𝑧𝑖𝑗𝑘−1 − 6𝑣𝑧𝑖𝑗𝑘



Finite Difference Transport Operations

• Advection:

−𝐯 ∙ 𝛻𝑠 ≈
−1

2ℎ
𝑣𝑥𝑖𝑗𝑘 𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘

𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

• Convection:

−𝐯 ∙ 𝛻𝐯 ≈
−1

2ℎ

𝑣𝑥𝑖𝑗𝑘 𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘 𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘 𝑣𝑦𝑖+1𝑗𝑘 − 𝑣𝑦𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘 𝑣𝑦𝑖𝑗+1𝑘 − 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑦𝑖𝑗𝑘+1 − 𝑣𝑦𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘 𝑣𝑧𝑖+1𝑗𝑘 − 𝑣𝑧𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗𝑘 𝑣𝑧𝑖𝑗+1𝑘 − 𝑣𝑧𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘 𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1

• Diffusion:

𝛻2𝑠 ≈
1

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘

• Viscosity:

𝜇𝛻2𝐯 ≈
𝜇

ℎ2

𝑣𝑥𝑖+1𝑗𝑘 + 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑥𝑖𝑗+1𝑘 + 𝑣𝑥𝑖𝑗−1𝑘 + 𝑣𝑥𝑖𝑗𝑘+1 + 𝑣𝑥𝑖𝑗𝑘−1 − 6𝑣𝑥𝑖𝑗𝑘
𝑣𝑦𝑖+1𝑗𝑘 + 𝑣𝑦𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗+1𝑘 + 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑦𝑖𝑗𝑘+1 + 𝑣𝑦𝑖𝑗𝑘−1 − 6𝑣𝑦𝑖𝑗𝑘
𝑣𝑧𝑖+1𝑗𝑘 + 𝑣𝑧𝑖−1𝑗𝑘 + 𝑣𝑧𝑖𝑗+1𝑘 + 𝑣𝑧𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘+1 + 𝑣𝑧𝑖𝑗𝑘−1 − 6𝑣𝑧𝑖𝑗𝑘



Navier-Stokes Equations



Navier-Stokes Equation

• The complete Navier-Stokes equation describes the 
strict conservation of mass, energy, and momentum 
within a fluid

• Energy can be converted between potential, kinetic, 
and thermal states

• The full equation accounts for fluid flow, convection, 
viscosity, sound waves, shock waves, thermal 
buoyancy, and more

• However, simpler forms of the equation can be derived 
for specific purposes. Fluid simulation, for example, 
typically uses a limited form known as the 
incompressible flow equation



Incompressibility

• Real fluids always have some degree of compressibility. Gasses are very 
compressible and even liquids can be compressed a little

• Sound waves in a fluid are caused by compression, as are supersonic shocks, but 
for now, we are not interested in modeling these phenomena

• We will therefore assume that the fluid is incompressible and we will enforce this 
as a constraint

• Incompressibility requires that there is zero divergence of the velocity field 
everywhere

𝛻 ∙ 𝐯 = 0

• This also implies the density will remain constant everywhere if it is constant at the 
start

• Incompressibility is actually a reasonable approximation, as compression has a 
negligible affect on fluids moving well below the speed of sound

• We are effectively assuming that the speed of sound is infinite (or much faster 
than the velocities that we are interested in simulating)



Navier-Stokes Equation

• The incompressible Navier-Stokes equation describes 
the forces on a fluid as the sum of convection, viscosity, 
and pressure terms:

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 − 𝛻𝑝

• In addition, we also have the incompressibility 
constraint:

𝛻 ∙ 𝐯 = 0



Navier-Stokes Equation

• The incompressible Navier-Stokes equation describes the acceleration of a 
fluid at each point as being the sum of convection, viscosity, and pressure 
terms

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 − 𝛻𝑝

• The convection term (−𝐯 ∙ 𝛻𝐯) causes the fluid motion to continue along 
according to Newton’s First Law

• The viscosity term (𝜇𝛻2𝐯) causes the fluid motion to smooth out either 
gradually (low 𝜇) or quickly (high 𝜇)

• The pressure term (−𝛻𝑝) enforces the incompressibility by causing 
potential changes in local density to be counteracted by a pressure force 
from high pressure (high density) areas to low pressure (low density) areas



Incompressible Navier-Stokes Equation

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 − 𝛻𝑝

𝛻 ∙ 𝐯 = 0

• This is about as simple of an equation that we can use to 
simulate fluid motion

• OK, we can actually make it a little simpler by assuming 
zero viscosity and dropping the 𝜇𝛻2𝐯 term. This is actually 
reasonable for low viscosity fluids like air and water, since 
the process of numerical simulation tends to add artificial 
viscosity as a result of the finite sampling in space and time



Incompressible Navier-Stokes Equation

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 − 𝛻𝑝

𝛻 ∙ 𝐯 = 0

• Assuming we keep the viscosity, we still have several things we’re ignoring:
– Variable temperature (thermal buoyancy, thermal diffusion…)
– Variable density (mixed oil & water…)
– Surface tension
– Compression waves (sound waves)
– Supersonic flows, supersonic shocks
– Phase changes (melting, evaporating…)
– Chemical reactions
– Combustion
– Non-Newtonian fluids (fluids with more complex viscosity behavior)
– And more

• Some of these require modeling compression, but others can be integrated into an 
incompressible solver



Computational Fluid Dynamics



Computational Fluid Dynamics

• Computational fluid dynamics (CFD) refers to 
the large collection of techniques for modeling 
fluids on computers

• It usually involves solving the Navier-Stokes 
equations in some form

• It has been studied since the earliest days of 
computers and even before. Some early 
practical methods for 3D flow simulation date 
back to around 1955



Field Representations

• We have several choices for representing fields

• Each method uses its own way of sampling the field at some interval

• Each method requires a way to interpolate the field between sample 
points

• Each method requires a way to compute the different spatial derivatives 
(𝛻, 𝛻 ⋅, 𝛻 ×, 𝛻2)



Staggered Grids

• We are mainly interested in modeling the vector velocity field

• We will use a staggered uniform grid, where we store the x-
component of velocity on the x-face of each cell, and the y-
component on the y-face, etc.

• Pressures are computed at the cell centers

𝑣𝑖−1/2𝑗𝑘 𝑣𝑖+1/2𝑗𝑘

𝑣𝑖𝑗+1/2𝑘

𝑣𝑖𝑗−1/2𝑘

𝑝𝑖𝑗𝑘



Boundary Conditions

• We will assume that the velocity fluid doesn’t 
flow through the boundaries, so we can force 
the velocity (and its derivatives) to 0

• We could use the same approach to tag 
certain grid cells as solid to model the 
interaction of a fluid with complex shapes



Navier-Stokes Fluid Simulation

• The incompressible Navier-Stokes equation describes 
the derivative of the fluid velocity at every point as:

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 − 𝛻𝑝

• Along with the kinematic constraint that the fluid must 
have zero divergence everywhere:

𝛻 ∙ 𝐯 = 0



Forward Euler Integration

• To simulate a fluid, we want to advance the velocity field each time step. If 
we used a forward Euler integration, we would want to do something like:

𝐯1 = 𝐯0 + ∆𝑡
𝑑𝐯

𝑑𝑡

= 𝐯0 + ∆𝑡 −𝐯0 ∙ 𝛻𝐯0 + 𝜇𝛻2𝐯0 − 𝛻𝑝

• We have two problems: first we haven’t discussed how to compute the 
pressure gradient 𝛻𝑝, and even if we did, we would still have the problem 
that the final velocity field 𝐯1 would violate the zero divergence constraint 
due to errors introduced by using a finite time step ∆𝑡:

𝛻 ∙ 𝐯1 ≠ 0



Pressure Projection Method

• Due to violation of the divergence constraint, we can not simply do 
the following:

𝐯1 = 𝐯0 + ∆𝑡 −𝐯0 ∙ 𝛻𝐯0 + 𝜇𝛻2𝐯0 − 𝛻𝑝

• Instead, we will use a two-step pressure projection method, where 
we split the integration into two steps:

𝐯∗ = 𝐯0 + ∆𝑡 −𝐯0 ∙ 𝛻𝐯0 + 𝜇𝛻2𝐯0
𝐯1 = 𝐯∗ + ∆𝑡 −𝛻𝑝

• The catch is that in between the two steps, we will solve for a 
pressure field 𝑝 such that the final solution 𝐯1 obeys the divergence 
constraint



Pressure Projection

𝐯1 = 𝐯∗ + ∆𝑡 −𝛻𝑝

• We need to find a pressure field 𝑝 such that the final velocity field 𝐯1 is non-divergent:

𝛻 ∙ 𝐯1 = 0

𝛻 ∙ 𝐯∗ + ∆𝑡 −𝛻𝑝 = 0

𝛻 ∙ 𝐯∗ + 𝛻 ∙ ∆𝑡 −𝛻𝑝 = 0

𝛻 ∙ 𝐯∗ − ∆𝑡 𝛻 ∙ 𝛻𝑝 = 0

𝛻 ∙ 𝐯∗ − ∆𝑡 𝛻2𝑝 = 0

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗



Pressure Field

• We need to find a pressure field 𝑝 such that:

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗

• This is known as a Poisson equation
• Several options exist for solving these systems

– Direct solution
– Iterative relaxation scheme
– Conjugate gradient solver
– Multi-grid solver

• Solving the Poisson equation is really the key computational step in 
fluid dynamics… however… we won’t get into the details today



Pressure Projection Method

At the beginning of the time step, we have a valid (non-divergent) velocity field 𝐯0. To 
advance the velocity field forward in time by ∆𝑡:

1. Compute partial (divergent) velocity field 𝐯∗ by finite differencing the convection 
and viscosity:

𝐯∗ = 𝐯0 + ∆𝑡 −𝐯0 ∙ 𝛻𝐯0 + 𝜇𝛻2𝐯0

2. Solve Poisson equation to get pressure field 𝑝:

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗

3. Compute final (non-divergent) velocity field 𝐯1 by adding pressure gradient term:

𝐯1 = 𝐯∗ + ∆𝑡 −𝛻𝑝



Projection Method

• This technique is a form of kinematic 
projection method

• This means that we first compute a partial 
solution that may violate some set of 
kinematic constraints

• We then project the partial solution to the 
nearest point in the space of legal solutions



Projection Method

• As a basic example of a kinematic projection method, consider a particle that has a kinematic 
constraint that it must stay on a circle of radius r

• Let’s say it’s position at time 𝑡0 is 𝐱0 and its velocity is 𝐯0
• To compute the position 𝐱1 at time ∆𝑡 later, we can start by computing a partial solution 

𝐱∗ = 𝐱0 + 𝐯0∆𝑡 that moves in a straight line and thus will violate the constraint

• We then “solve” for our correction ∆𝐱 and add it to the partial solution to compute the final 
legal solution 𝐱1

1. 𝐱∗ = 𝐱0 + 𝐯0∆𝑡 (Compute partial solution by advancing with derivative)

2.∆𝐱 = 𝑟
𝐱∗

𝐱∗
− 𝐱∗ (Compute projection factor using kinematic (geometric) rule)

3. 𝐱1 = 𝐱∗ + ∆𝐱 (Add correction to get final legal solution)

𝐱∗𝐱0
𝐱1

∆𝐱

𝐯0∆𝑡


