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Fields

• A field is a function of position x and 
may vary over time t

• A scalar field such as s(x,t) assigns a 
scalar value to every point in space.   
An example of a scalar field would be 
the temperature throughout a room

• A vector field such as v(x,t) assigns a 
vector to every point in space. An 
example of a vector field would be the 
velocity of the air



Del Symbol

• The Del symbol 𝛻 is useful for defining several 
types of spatial derivatives of fields

𝛻 =
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑇

• Technically, 𝛻 by itself is neither a vector nor an 
operator, although it acts like both. It is used to 
define the gradient 𝛻, divergence 𝛻 ∙, curl 𝛻 ×, 
and Laplacian 𝛻2 operators



Gradient

• The gradient is a generalization of the concept of a derivative

𝛻𝑠 =
𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝑇

• When applied to a scalar field, the 
result is a vector pointing in the 
direction the field is increasing and 
the magnitude indicates the rate of 
increase

• In 1D, this reduces to the standard 
derivative (slope)



Gradient

• The gradient 𝛻𝑠 is a vector that points “uphill” in the 
direction that scalar field s is increasing

• The magnitude of 𝛻𝑠 is equal to the rate that s is 
increasing per unit of distance

𝛻𝑠

𝛻𝑠

𝛻𝑠

𝛻𝑠

𝛻𝑠=0

𝛻𝑠=0



Divergence

• The divergence of a vector field is a scalar measure of
how much the vectors are expanding

𝛻 ∙ 𝐯 =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

• For example, when air is heated in a region, it will 
locally expand, causing a positive divergence in the 
region of expansion

• The divergence operator works on a vector field and 
produces a scalar field as a result



Divergence

• The divergence is positive where the field is expanding:

𝛻 ∙ 𝐯 > 0

• The divergence is negative where the field is contracting: 

𝛻 ∙ 𝐯 < 0

• A constant field has zero divergence, as can many others:

𝛻 ∙ 𝐯 = 0



Curl

• The curl operator produces a new vector field that 
measures the rotation of the original vector field

𝛻 × 𝐯 =
𝜕𝑣𝑧
𝜕𝑦

−
𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥
𝜕𝑦

𝑇

• For example, if the air is circulating in a particular 
region, then the curl in that region will represent the 
axis of rotation

• The magnitude of the curl is twice the angular velocity 
of the vector field



Curl

• A counter-clockwise rotating 
field has a curl vector pointing 
out of the screen towards the 
viewer, perpendicular to the 
rotation plane

• A constant vector field has zero 
curl: 𝛻 × 𝐯 = 0 0 0 𝑇



Laplacian

• The Laplacian operator is one type of second derivative of a scalar or vector field

𝛻2 = 𝛻 ∙ 𝛻 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2

• Just as in 1D where the second derivative relates to the curvature of a function, 
the Laplacian relates to the curvature of a field

• The Laplacian of a scalar field is another scalar field:

𝛻2𝑠 =
𝜕2𝑠

𝜕𝑥2
+
𝜕2𝑠

𝜕𝑦2
+
𝜕2𝑠

𝜕𝑧2

• And the Laplacian of a vector field is another vector field

𝛻2𝐯 =
𝜕2𝐯

𝜕𝑥2
+
𝜕2𝐯

𝜕𝑦2
+
𝜕2𝐯

𝜕𝑧2



Laplacian

• The Laplacian is positive in an area of the field that is 
surrounded by higher values

• The Laplacian is negative where the field is surrounded 
by lower values

• The Laplacian is zero where the field is either flat, 
linear sloped, or the positive and negative curvatures 
cancel out (saddle points)



Del Operations

• Del: 𝛻 =
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑇

• Gradient: 𝛻𝑠 =
𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝑇

• Divergence: 𝛻 ∙ 𝐯 =
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧

• Curl: 𝛻 × 𝐯 =
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦

𝑇

• Laplacian: 𝛻2𝑠 =
𝜕2𝑠

𝜕𝑥2
+

𝜕2𝑠

𝜕𝑦2
+

𝜕2𝑠

𝜕𝑧2



Numerical Representation of 
Fields



Computational Vector Calculus

• Now that we’ve seen the basic operations of 
differential vector calculus, we turn to the 
issue of computer implementation

• The Del operations are defined in terms of 
general fields

• We must address the issue of how we 
represent fields on the computer and how we 
perform calculus operations on them



Numerical Representation of Fields

• Mathematically, a scalar or vector field represents a continuously 
variable value across space that can have infinite detail

• Obviously, on the computer, we can’t truly represent the value of 
the field everywhere to this level, so we must use some form of 
approximation

• A standard approach to representing a continuous field is to sample 
it at some number of discrete points and use some form of 
interpolation to get the value between the points

• There are several choices of how to arrange our samples:
– Uniform grid
– Hierarchical grid
– Irregular mesh
– Particle based



Uniform Grids

• Uniform grids are easy to deal with and tend to 
be computationally efficient due to their 
simplicity

• It is very straightforward to compute derivatives 
on uniform grids

• However, they require large amounts of memory 
to represent large domains

• They don’t adapt well to varying levels of detail, 
as they represent the field to an even level of 
detail everywhere



Uniform Grids



Hierarchical Grids

• Hierarchical grids such as quadtrees and octrees 
attempt to benefit from the simplicity of uniform 
grids, but also have the additional benefit of 
scaling well to large problems and varying levels 
of detail

• The grid resolution can locally increase to handle 
more detail in regions that require it

• This allows both memory and compute time to be 
used efficiently and adapt automatically to the 
problem complexity



Hierarchical Grids



Hierarchical Grids



Irregular Meshes

• Irregular meshes are built from primitive cells (usually 
triangles in 2D and tetrahedra in 3D)

• Irregular meshes are used extensively in engineering 
applications, but less so in computer animation

• One of the main benefits of irregular meshes is their 
ability to adapt to complex domain geometry

• They also adapt well to varying levels of detail
• They can be quite complex to generate however and 

can have a lot of computational overhead in highly 
dynamic situations with moving objects

• If the irregular mesh changes over time to adapt to the 
problem complexity, it is called an adaptive mesh



Irregular Mesh



Adaptive Meshes



Particle-Based (Meshless)

• Instead of using a mesh with well defined connectivity, 
particle methods sample the field on a set of irregularly 
distributed particles

• Particles aren’t meant to be 0 dimensional points- they are 
assumed to represent a small ‘smear’ of the field, over 
some radius, and the value of the field at any point is 
determined by several nearby particles

• Calculating derivatives can be tricky and there are several 
approaches

• Particle methods are very well suited to water and liquid 
simulation for a variety of reasons and have been gaining a 
lot of popularity in the computer graphics industry recently



Particle Based



Field Representations

• Each method uses its own way of sampling the field at some 
interval

• Each method requires a way to interpolate the field between 
sample points

• Each method requires a way to compute the different spatial 
derivatives (𝛻, 𝛻 ⋅, 𝛻 ×, 𝛻2)



Derivative Computation



Uniform Grids & Finite Differencing

• For today, we will just consider the case of 
uniform grid

• A scalar field is represented as a 2D/3D array 
of floats and a vector field is a 2D/3D array of 
vectors

• We will use a technique called finite 
differencing to compute derivatives of the 
fields



Finite Difference First Derivative

• The derivative (slope) of a 1D function 𝑠 𝑥
stored uniformly spaced at values of 𝑥𝑖 can be 
approximated by finite differencing:

𝑑𝑠

𝑑𝑥
𝑥𝑖 ≈

∆𝑠

∆𝑥
𝑥𝑖 =

𝑠𝑖+1 − 𝑠𝑖−1
2ℎ

• Where ℎ is the grid size (ℎ = 𝑥𝑖+1 − 𝑥𝑖)



Finite Difference First Derivative

𝑠𝑖
𝑠𝑖+1

𝑠𝑖+2

𝑠𝑖−1

𝑠𝑖−2 𝑠𝑖+1 − 𝑠𝑖−1
2ℎ

ℎ

𝑑𝑠

𝑑𝑥
𝑥𝑖 ≈

∆𝑠

∆𝑥
𝑥𝑖 =

𝑠𝑖+1 − 𝑠𝑖−1
2ℎ



Finite Difference Partial Derivatives

• If we have a scalar field 𝑠 𝐱, 𝑡 stored on a uniform 3D grid, we can 
approximate the partial derivative along the x direction at grid cell 
𝑖𝑗𝑘 as:

𝜕𝑠

𝜕𝑥
𝐱𝑖𝑗𝑘 ≈

∆𝑠

∆𝑥
𝐱𝑖𝑗𝑘 =

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘

2ℎ

• Where cell 𝑖 + 1𝑗𝑘 is the cell in the +x direction and cell 𝑖 − 1𝑗𝑘 is 
in the –x direction

• Also ℎ is the cell size in the x direction
• The partials along y and z are done in the same fashion
• All of the partial derivatives in the gradient, divergence, and curl 

can be computed in this way



Neighboring Grid Points

𝑠𝑖𝑗𝑘 𝑠𝑖+1𝑗𝑘𝑠𝑖−1𝑗𝑘

𝑠𝑖𝑗+1𝑘

𝑠𝑖𝑗−1𝑘

𝑠𝑖𝑗𝑘−1

𝑠𝑖𝑗𝑘+1



Finite Difference Gradient

• We can compute the finite difference gradient 𝛻𝑠 at grid point 𝑖𝑗𝑘 from 𝑠 values at 
neighboring grid points

𝛻𝑠 𝐱𝑖𝑗𝑘 =
𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝑇

≈
∆𝑠

∆𝑥

∆𝑠

∆𝑦

∆𝑠

∆𝑧

𝑇

=
𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘

2ℎ

𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘

2ℎ

𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

2ℎ

𝑇

=
1

2ℎ

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘
𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘
𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1



Finite Difference Divergence

• We can compute a finite difference of the divergence at grid point ijk in a 
similar fashion:

𝛻 ∙ 𝐯 𝐱𝑖𝑗𝑘 =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

≈
∆𝑣𝑥
∆𝑥

+
∆𝑣𝑦

∆𝑦
+
∆𝑣𝑧
∆𝑧

=
𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘

2ℎ
+
𝑣𝑦𝑖𝑗+1𝑘 − 𝑣𝑦𝑖𝑗−1𝑘

2ℎ
+
𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1

2ℎ

=
1

2ℎ
𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗+1𝑘 − 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1



Finite Difference Curl

• For the finite difference curl at grid point ijk we have:

𝛻 × 𝐯 𝐱𝑖𝑗𝑘 =
𝜕𝑣𝑧
𝜕𝑦

−
𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥
𝜕𝑦

𝑇

≈
∆𝑣𝑧
∆𝑦

−
∆𝑣𝑦

∆𝑧

∆𝑣𝑥
∆𝑧

−
∆𝑣𝑧
∆𝑥

∆𝑣𝑦

∆𝑥
−
∆𝑣𝑥
∆𝑦

𝑇

=
1

2ℎ

𝑣𝑧𝑖𝑗+1𝑘 − 𝑣𝑧𝑖𝑗−1𝑘 − 𝑣𝑦𝑖𝑗𝑘+1 − 𝑣𝑦𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1 − 𝑣𝑧𝑖+1𝑗𝑘 − 𝑣𝑧𝑖−1𝑗𝑘

𝑣𝑦𝑖+1𝑗𝑘 − 𝑣𝑦𝑖−1𝑗𝑘 − 𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘



Finite Difference Second Derivative

• The second derivative can be approximated by finite differencing in a 
similar way:

𝑑2𝑠

𝑑𝑥2
𝑥𝑖 ≈

∆2𝑠

∆𝑥2
=
∆

∆𝑠
∆𝑥

∆𝑥

=

𝑠𝑖+1 − 𝑠𝑖
ℎ

−
𝑠𝑖 − 𝑠𝑖−1

ℎ
ℎ

=
𝑠𝑖+1 − 2𝑠𝑖 + 𝑠𝑖−1

ℎ2



Finite Difference Second Derivative

𝑠𝑖
𝑠𝑖+1

𝑠𝑖+2

𝑠𝑖−1

𝑠𝑖−2

𝑠𝑖+1 − 𝑠𝑖
ℎ

𝑠𝑖 − 𝑠𝑖−1
ℎ

ℎ

𝑑2𝑠

𝑑𝑥2
𝑥𝑖 ≈

∆ ∆𝑠
∆𝑥
∆𝑥

𝑥𝑖 =

𝑠𝑖+1 − 𝑠𝑖
ℎ

−
𝑠𝑖 − 𝑠𝑖−1

ℎ
ℎ

=
𝑠𝑖+1 − 2𝑠𝑖 + 𝑠𝑖−1

ℎ2



Finite Difference Laplacian

• The finite difference Laplacian at point ijk is:

𝛻2𝑠 𝐱𝑖𝑗𝑘 =
𝜕2𝑠

𝜕𝑥2
+
𝜕2𝑠

𝜕𝑦2
+
𝜕2𝑠

𝜕𝑧2

≈
∆2𝑠

∆𝑥2
+
∆2𝑠

∆𝑦2
+
∆2𝑠

∆𝑧2

=
𝑠𝑖+1𝑗𝑘 − 2𝑠𝑖𝑗𝑘 + 𝑠𝑖−1𝑗𝑘

ℎ2
+
𝑠𝑖𝑗+1𝑘 − 2𝑠𝑖𝑗𝑘 + 𝑠𝑖𝑗−1𝑘

ℎ2
+
𝑠𝑖𝑗𝑘+1 − 2𝑠𝑖𝑗𝑘 + 𝑠𝑖𝑗𝑘−1

ℎ2

=
1

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘



Finite Difference Operations

• Gradient: 𝛻𝑠 ≈
1

2ℎ

𝑠𝑖+1𝑗𝑘 − 𝑠𝑖−1𝑗𝑘
𝑠𝑖𝑗+1𝑘 − 𝑠𝑖𝑗−1𝑘
𝑠𝑖𝑗𝑘+1 − 𝑠𝑖𝑗𝑘−1

• Divergence: 𝛻 ∙ 𝐯 ≈
1

2ℎ
𝑣𝑥𝑖+1𝑗𝑘 − 𝑣𝑥𝑖−1𝑗𝑘 + 𝑣𝑦𝑖𝑗+1𝑘 − 𝑣𝑦𝑖𝑗−1𝑘 + 𝑣𝑧𝑖𝑗𝑘+1 − 𝑣𝑧𝑖𝑗𝑘−1

• Curl: 𝛻 × 𝐯 ≈
1

2ℎ

𝑣𝑧𝑖𝑗+1𝑘 − 𝑣𝑧𝑖𝑗−1𝑘 − 𝑣𝑦𝑖𝑗𝑘+1 − 𝑣𝑦𝑖𝑗𝑘−1

𝑣𝑥𝑖𝑗𝑘+1 − 𝑣𝑥𝑖𝑗𝑘−1 − 𝑣𝑧𝑖+1𝑗𝑘 − 𝑣𝑧𝑖−1𝑗𝑘

𝑣𝑦𝑖+1𝑗𝑘 − 𝑣𝑦𝑖−1𝑗𝑘 − 𝑣𝑥𝑖𝑗+1𝑘 − 𝑣𝑥𝑖𝑗−1𝑘

• Laplacian: 𝛻2𝑠 ≈
1

ℎ2
𝑠𝑖+1𝑗𝑘 + 𝑠𝑖−1𝑗𝑘 + 𝑠𝑖𝑗+1𝑘 + 𝑠𝑖𝑗−1𝑘 + 𝑠𝑖𝑗𝑘+1 + 𝑠𝑖𝑗𝑘−1 − 6𝑠𝑖𝑗𝑘

• NOTE: These are based on computing the derivatives at the grid points on a uniform grid



Boundary Conditions

• We saw that computing various spatial 
derivatives requires using values from 
neighboring grid points

• What do we do on the boundaries where we 
might not have neighboring grid points?

• The answer is problem specific, but it falls 
within the general subject of boundary 
conditions



Boundary Conditions

• There are some options for dealing with 
derivatives at the boundaries
– Use directionally biased methods that shift the 

derivative computation to the right or left by using 
values to the right or left of the boundary (or 
up/down…)

– In some cases, boundary values can be set to known 
values, such as 0 for the fluid velocity at a solid wall 
boundary (and 0 for all velocity derivatives)

• We’ll talk about some more specifics when we
get into fluid dynamics in the next lecture



Grid Structures



First Derivative at Grid Point

𝑠𝑖
𝑠𝑖+1

𝑠𝑖+2

𝑠𝑖−1

𝑠𝑖−2 𝑠𝑖+1 − 𝑠𝑖−1
2ℎ

ℎ

𝜕𝑠

𝜕𝑥
𝑥𝑖 ≈

∆𝑠

∆𝑥
𝑥𝑖 =

𝑠𝑖+1 − 𝑠𝑖−1
2ℎ

𝑥𝑖



First Derivative at Midpoint

𝑠𝑖
𝑠𝑖+1

𝑠𝑖+2

𝑠𝑖−1

𝑠𝑖−2
𝑠𝑖+1 − 𝑠𝑖

ℎ

ℎ

𝜕𝑠

𝜕𝑥
𝑥𝑖+ Τ1 2 ≈

∆𝑠

∆𝑥
𝑥𝑖+ Τ1 2 =

𝑠𝑖+1 − 𝑠𝑖
ℎ

𝑥𝑖+1/2



Midpoint Derivative

• If we want to calculate the derivative at the grid points, we use:

∆𝑠

∆𝑥
𝑥𝑖 =

𝑠𝑖+1 − 𝑠𝑖−1
2ℎ

• If we want to calculate the derivative halfway between grid points, we can use:

∆𝑠

∆𝑥
𝑥𝑖+ Τ1 2 =

𝑠𝑖+1 − 𝑠𝑖
ℎ

• The second method is usually better because it uses a more localized estimate of 
the derivative. It also makes use of all nearby data, instead of the first method, 
which ignores the closest value of the scalar field available

• To make use of this however, one must formulate the equations of interest in a 
way that is compatible, which tends to be problem-specific



Collocated Grids

• The finite difference derivative computations we 
looked at so far are based on the assumption that 
we want to calculate the derivatives at the exact 
same points that we are storing the field values

• This is known as a collocated grid, since all values 
of interest and their derivatives are collocated at 
the same points

• However, this leads to the same inaccuracy in 
computing derivatives that we see in 1D 
problems



Staggered Grids

• When possible, it is often better to use a staggered grid, where certain 
values are stored at the grid points and other values are stored between 
points

• In fact, values can be stored at the grid points, on segment edges, on cell 
faces, or in cell centers

• The 3 values of a 3D vector don’t even have to be stored in the same place

• For example, some fluid simulation approaches store the x-component of 
velocity on the x-face of each cell, and the y-component on the y-face, etc. 
Pressures are computed at the cell centers, based on the velocities 
through the 6 faces of the cell

𝑣𝑖−1/2𝑗𝑘 𝑣𝑖+1/2𝑗𝑘

𝑣𝑖𝑗+1/2𝑘

𝑣𝑖𝑗−1/2𝑘

𝑝𝑖𝑗𝑘



Staggered Divergence

• Consider the case where each component of a vector is stored on the corresponding face

• If a cell is indexed as ijk, the vectors will be at the halfway values

• We compute the divergence at the center of cell ijk as:

𝛻 ∙ 𝐯 𝐱𝑖𝑗𝑘 =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

≈
∆𝑣𝑥
∆𝑥

+
∆𝑣𝑦

∆𝑦
+
∆𝑣𝑧
∆𝑧

=
𝑣𝑥𝑖+1/2𝑗𝑘 − 𝑣𝑥𝑖−1/2𝑗𝑘

ℎ
+
𝑣𝑦𝑖𝑗+1/2𝑘 − 𝑣𝑦𝑖𝑗−1/2𝑘

ℎ
+
𝑣𝑧𝑖𝑗𝑘+1/2 − 𝑣𝑧𝑖𝑗𝑘−1/2

ℎ

=
1

ℎ
𝑣𝑥𝑖+1/2𝑗𝑘 − 𝑣𝑥𝑖−1/2𝑗𝑘 + 𝑣𝑦𝑖𝑗+1/2𝑘 − 𝑣𝑦𝑖𝑗−1/2𝑘 + 𝑣𝑧𝑖𝑗𝑘+1/2 − 𝑣𝑧𝑖𝑗𝑘−1/2



Higher Order Methods



Higher Order Approximations

• We chose to construct our finite derivative operators by 
using only the nearest neighboring values and using linear 
(slope) approximations to the derivatives

• We could optionally use more nearby points to get a better 
approximation to a derivative

• Higher order spatial methods like this can produce better 
quality and more accurate simulations

• However, they make certain assumptions about 
smoothness and behave poorly in areas of rapid change

• They also require special handling near the boundaries
• Higher order spatial methods are not too hard to design for 

uniform grids, but are tricky to derive for other geometries



High Order Derivative

• Consider estimating the derivative on a grid

• With a linear method, we looked at two values and fit a 
straight line between them and used the slope of that 
line as the derivative

• With high order methods, we use a weighted blend 
(usually derived through a Taylor series) at more than 
two values to compute the slope at the point we’re 
interested in

• These methods are straightforward to implement as 
they mainly just involve computing a blend of nearby 
values weighted by pre-specified coefficients



Fourth Order Midpoint Method

𝑠𝑖
𝑠𝑖+1

𝑠𝑖+2

𝑠𝑖−1

𝑠𝑖−2
𝑠𝑖+1 − 𝑠𝑖

ℎ

ℎ

𝑑𝑠

𝑑𝑥
𝑥𝑖+ Τ1 2 ≈

𝑠𝑖−1 − 27𝑠𝑖 + 27𝑠𝑖+1 − 𝑠𝑖+2
24ℎ



High Order Derivatives

𝑑𝑠

𝑑𝑥
𝑥𝑖 ≈

−𝑠𝑖−1 + 𝑠𝑖+1
2ℎ

𝑑𝑠

𝑑𝑥
𝑥𝑖 ≈

𝑠𝑖−2 − 8𝑠𝑖−1 + 8𝑠𝑖+1 − 𝑠𝑖+2
12ℎ

𝑑𝑠

𝑑𝑥
𝑥𝑖 ≈

−𝑠𝑖−3 + 9𝑠𝑖−2 − 45𝑠𝑖−1 + 45𝑠𝑖+1 − 9𝑠𝑖+2 + 𝑠𝑖+3
60ℎ


