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Eigenvalues & Eigenvectors



Eigenvalue Equations

• Before we get into fracture modeling, let us review the important 
linear algebra topic of eigenvalues and eigenvectors

• The standard matrix eigenvalue equation is written as:

𝐀𝐱 = 𝜆𝐱

• Usually, we have a known matrix 𝐀 and we want to find the unit 
length (eigen) vectors 𝐱, such that the transformed version 𝐀𝐱 is in 
the same direction as the original vector, scaled by nonzero 
(eigenvalue) 𝜆

• An nxn matrix 𝐀 will have n orthogonal eigenvectors, and n
associated eigenvalues, but they may contain complex numbers

• If the matrix is symmetric, then all of the eigenvectors and 
eigenvalues will be made of real numbers



Eigenvalues

• Consider an orthogonal 3D rotation matrix
• There will be a vector along the axis of rotation that does not 

change when the rotation is applied
• In this case, there is only one real eigenvector and it’s eigenvalue is 

1, since the length does not change
• Consider an xy-plane shear matrix

𝑀 =
1 𝑠 0
0 1 0
0 0 1

• It will have two real eigenvectors (x & z), both with eigenvalues of 1



2D Examples

• Consider a 2D example. The red arrow shows to the 
first column vector and the green shows the second

• The black vectors are the eigenvectors (scaled down 
for visibility)

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑠ℎ𝑒𝑎𝑟 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐



Orthogonal Diagonalization

• We can see that a symmetric matrix can be thought of as a non-uniform scale 
applied at some orthogonal orientation

• We can represent the eigenvalues as the diagonal of a non-uniform scale matrix:

𝚲 =

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

• The orthogonal orientation is the basis formed by the set of eigenvectors. We can 
group these into an orthogonal basis matrix 𝐐

• The symmetric matrix 𝐀 can be decomposed into a rotation from basis 𝐐 into the 
identity space (i.e., 𝐐−1) followed by the non-uniform scale, followed by a forward 
rotation by 𝐐 to align it back in place

• We can write this as:
𝐀 = 𝐐𝚲𝐐−1



Orthogonal Diagonalization

• We see that we can represent a symmetric matrix as an orthonormal 
matrix 𝐐 times a diagonal matrix 𝚲 times 𝐐−1. We can actually use 𝐐𝑇

because 𝐐𝑇 = 𝐐−1for orthonormal matrices

𝐀 = 𝐐𝚲𝐐𝑇

• The columns of 𝐐 are the eigenvectors and the diagonal elements of 𝚲 are 
the eigenvalues

• This is called an orthogonal diagonalization

• It is common in numerical computing (and physics simulation) to have a 
symmetric matrix and require the eigenvalues and eigenvectors

• Therefore, it would be nice to have an algorithm that could take 𝐀 as input 
and compute 𝐐 and 𝚲 as output



Cyclic Jacobi Algorithm

• Luckily, we have the cyclic Jacobi algorithm that does exactly this
• As an added advantage, this is actually a pretty simple algorithm to 

implement and can be very stable and reliable with minimal effort
• We iteratively compute

𝐀 = 𝐐𝑖𝚲𝑖𝐐𝑖
𝑇

• Where 𝐐0 = 𝐈 and 𝚲0 = 𝐀
• Each iteration, we will compute improved versions of 𝐐𝑖 and 𝚲𝑖

until 𝚲𝑖 is sufficiently diagonalized (i.e., within floating point 
tolerances)



Off-Diagonal Elements

• The matrix will have diagonal elements and 
off-diagonal elements

• Our goal is to gradually remove the off-
diagonal elements, reducing them to 0

• Each step of the process, we choose an off-
diagonal element and build an orthonormal 
matrix 𝐉 that causes that particular value to go 
to exactly 0 in the next step of the iteration



Cyclic Jacobi Algorithm

• We can insert an orthonormal matrix 𝐉 (Note 𝐉𝐉𝑇 = 𝐈)

𝐀 = 𝐐𝑖𝚲𝑖𝐐𝑖
𝑇

𝐀 = 𝐐𝑖𝐉𝐉
𝑇𝚲𝑖𝐉𝐉

𝑇𝐐𝑖
𝑇

𝐀 = 𝐐𝑖𝐉 ⋅ 𝐉
𝑇𝚲𝑖𝐉 ⋅ 𝐉

𝑇𝐐𝑖
𝑇

• And use this to generate a process for iteration

𝐀 = 𝐐𝑖+1𝚲𝑖+1𝐐𝑖+1
𝑇

𝐐𝑖+1 = 𝐐𝑖𝐉
𝚲𝑖+1 = 𝐉𝑇𝚲𝑖𝐉



Iteration

𝚲𝑖+1 = 𝐉𝑇𝚲𝑖𝐉

• We wish to find an orthonormal matrix 𝐉 that improves our 
solution by making 𝚲𝑖+1 more diagonal than 𝚲𝑖

• We can do this by finding a rotation that causes one 
symmetric pair of the off-diagonal elements 𝚲𝑖+1 of to be 0 
after the iteration

• For a 3D matrix, for example, we can cancel out the xy (and 
yx) elements by finding the correct rotation in the xy plane

• In higher dimensions, we can cancel out the 𝑗𝑘 (and 𝑘𝑗) 
elements by finding the correct rotation in the 𝑗𝑘 plane



Givens Rotation

• In numerical computing, a Givens rotation is an n-dimensional 
rotation about a plane formed by two principal axes

• For example, we can write 𝐆𝑗𝑘 𝜃 as the rotation in the plane of the 
𝑗th and 𝑘th axis by angle 𝜃

𝐆𝑗𝑘 𝜃 =

1
⋱

cos 𝜃 ⋯

0
−sin 𝜃

⋮ ⋱ ⋮

sin 𝜃

0

⋯ cos 𝜃

⋱
1



Rotation Solution

𝚲𝑖+1 = 𝐉𝑇𝚲𝑖𝐉

• We would like to find the 𝑗𝑘 Givens rotation that causes element 𝑗𝑘 to be 0 after 
the iteration

𝚲𝑖+1 = 𝐆𝑗𝑘 𝜃 𝑇 𝚲𝑖𝐆𝑗𝑘 𝜃

• We can multiply this out for the 𝑗𝑘 element of 𝚲𝑖+1, using 𝑐 = cos 𝜃 and 𝑠 =
sin 𝜃

𝛬′𝑗𝑘 = 𝑐2 − 𝑠2 𝛬𝑗𝑘 + 𝑠𝑐 𝛬𝑗𝑗 − 𝛬𝑘𝑘

• We wish to find the angle 𝜃 that causes 𝛬′𝑗𝑘 to be 0 which can be solved as:

𝜃 =
𝛬𝑘𝑘 − 𝛬𝑗𝑗

2𝛬𝑗𝑘



Iteration

• We cycle through the off-diagonal elements
• For each element 𝑗𝑘, we compute:

𝜃 =
𝛬𝑘𝑘 − 𝛬𝑗𝑗

2𝛬𝑗𝑘

• To get 𝐆𝑗𝑘 𝜃 and then update 

𝐐𝑖+1 = 𝐐𝑖𝐆𝑗𝑘 𝜃

𝚲𝑖+1 = 𝐆𝑗𝑘 𝜃 𝑇 𝚲𝑖𝐆𝑗𝑘 𝜃

• Note: these should use matrix multiplication that is optimized to take advantage of 
the fact that 𝐆𝑗𝑘 𝜃 is mostly 1’s and 0’s. Very few elements need to be updated 
and this can be performed in linear time with respect to n for an nxn matrix

• We stop iterating when all of the off-diagonal elements are close enough to 0



Cyclic Jacobi Algorithm

• At each iteration, we choose a rotation that zeros out one 
of the off-diagonal element pairs of 𝚲

• The overall algorithm can just cycle through the off-
diagonal values and zero them out one by one

• The catch is that each new rotation can take previous zeros 
and make them non-zero again, but the effect grows 
smaller as the process proceeds

• The algorithm will consistently improve the result with each 
iteration, and will proceed until all of the off-diagonal 
elements are within some small tolerance near zero

• It is a good method for finding the eigenvalues and 
eigenvectors of a symmetric matrix and is included in many 
common numerical computation toolkits



Numerical Recipes

• “Numerical Recipes Third Edition”, 
Press, Teukolsky, Vetterling, Flannery, 
2007

• This is a fantastic book that covers a 
very wide range of practical 
numerical algorithms. Every serious 
computer scientist should be familiar 
with this book



Fracture Mechanics



Fracture Mechanics

• Fracture is a complex subject that is ultimately 
dependent material properties at a variety of 
scales from macroscopic down to the 
molecular level



Fracture Theories

• An early fracture theory is the maximum normal strain theory (or 
St. Venant theory) which says that fracture occurs when the largest 
normal strain exceeds the uniaxial fracture strain

• A slight variation is the maximum principal stress theory (or Rankine 
theory) which says fracture occurs when the magnitude of the 
largest principal stress exceeds the uniaxial fracture stress

• Most materials can tolerate much larger compression forces 
compared to tension. Coulomb-Mohr theory is designed to address 
these different extremes and handle combinations where one axis 
is under compression while another is under tension

• They can all be looked at from the same point of view as they all 
define a boundary in strain/stress tensor space that if crossed, leads 
to a material failure (fracture). The exact shape of the boundary is 
defined differently with each model



Crack Tip

• If one applies the linear elasticity theory to an idealized representation of 
a crack tip under tension, the math leads to a stress that approaches 
infinity in the immediate vicinity of the tip

• This would lead to a crack always propagating once it starts, if the material 
is under tension. Highly elastic materials like glass can exhibit brittle 
fracture like this

• In real materials, the crack propagation can be stopped by plastic 
deformation taking place near the tip (even if it is very slight). If there is a 
noticeable amount of plastic deformation, we refer to it as ductile fracture



Fracture Modeling



Fracture Analysis

• For engineering applications, methods have been developed for 
analyzing the properties of fracture and crack propagation

• Most of these methods involve close-up study of crack tips and 
require some type of way to handle the fact that stresses approach 
extreme levels in very small areas

• For these reasons, most engineering grade fracture analysis is done 
using specialized finite element types that are designed to handle 
these cases

• One catch is that they tend to require the placement of these 
special elements in the place where you are expecting the extreme 
stresses

• This makes them useful for applications like analyzing CAD models 
for potential fracture sites as well as various theoretical applications

• For more general applications, we would like to allow any element
to fracture if necessary, rather than requiring specific element types



Fracture Modeling

• To include fracture into our previously discussed 
model of tetrahedral elastic/plastic elements:

– We will have to choose a material failure model to 
determine when a fracture starts

– We will also need some way to evaluate this model at 
some location of choice (i.e., at node points, element 
centers…)

– We will need a way to modify the mesh to account for 
the fracture. Generally, this will involve cutting the 
mesh at some local fracture plane



Fracture Paper
• We will look at the paper “Graphical Modeling and Animation 

of Brittle Fracture”, O’Brien, Hodgins, 1999

• This presents a general purpose fracture algorithm for 
complex geometry

• They start with a tetrahedral mesh and a linear elastic solid 
model

• They introduce a process for determining the initiation of 
fracture at a node and propagating the fracture throughout 
the solid

• They also discuss collision detection and response



Fracture Paper

• The paper uses a tensile stress measure to 
determine when fracture occurs

• They evaluate this at the nodes of the mesh

• If fracture occurs at a node, the fracture plane 
is found and used to split neighboring 
tetrahedra

• The fracture does not propagate any further in 
one simulation step, but will very possibly 
continue in the next frame



Algorithm Overview

• “Our fracture algorithm is as follows:
– After every time step, the system resolves the internal forces acting on 

all nodes into their tensile and compressive components, discarding 
any unbalanced portions

– At each node, the resulting forces are then used to form a tensor that 
describes how the internal forces are acting to separate that node

– If the action is sufficiently large, the node is split into two distinct 
nodes and a fracture plane is computed

– All elements attached to the node are divided along the plane with the 
resulting tetrahedra assigned to one or the other incarnations of the 
split node, thus creating a discontinuity in the material

– Any cached values, such as the node mass or the element shape 
functions, are recomputed for the affected elements and nodes

– With this technique, the location of a fracture or crack tip need not be 
explicitly recorded unless this information is useful for some other 
purpose, such as rendering.”

𝑠𝑜𝑢𝑟𝑐𝑒: 𝑂′𝐵𝑟𝑖𝑒𝑛, 𝑒𝑡 𝑎𝑙. , 1999



Force Decomposition

• The paper uses a linear elastic model with Green’s strain 𝛜 tensor 
and the Cauchy stress tensor 𝛔

• They also include a linear damping model and so the stress tensor is 
the sum of elastic and viscous components

• After computing the stress tensor 𝛔 for an element, it is 
decomposed into tensile 𝛔+ and compressive 𝛔− components such 
that 𝛔 = 𝛔+ + 𝛔−

• This is done by taking the eigenvalues & eigenvectors of the stress 
tensor

• Positive eigenvalues correspond to tensile stresses and negative 
ones to compressive stresses

• They separate these out and add them to the appropriate tensor 
(𝛔+ or 𝛔−)

• We can use these to compute the forces at each node that result 
from tensile and compressive stresses



Separation Tensor

• Each node is connected to several tetrahedra, and 
each tetrahedron computes the node forces 
resulting from tensile and compressive stresses

• These are summed up into a symmetric 3x3 stress 
variant called the separation tensor 𝛓

• The positive eigenvalues of this tensor represent 
the overall tensile stresses acting on the node 
and the largest of these can be compared to the 
material toughness 𝜏 to determine if fracture 
occurs at the node



Fracture Plane

• The eigenvector corresponding to the largest 
eigenvalue of 𝛓 will indicate the direction of 
maximum tensile stress, and thus will be 
normal to the fracture plane



Node Splitting

• If we determine that a fracture takes place at a node, we 
duplicate the node and re-assign the local tetrahedra to 
one of the two nodes based on whether they are above or 
below the fracture plane

• A simple implementation could just loop through the 
elements connected to the node and assign them based on 
where the element center is relative to the fracture plane

• A more elaborate implementation (like the one in the 
paper) would actually split elements that intersect the 
plane

• After any splitting and re-assigning is finished, element and 
node properties (volumes, masses, etc.) are recomputed as 
needed



Element Splitting

• Given the where the fracture occurs and the normal 
to the fracture plane, we can determine how to split 
up a tetrahedron that intersects the fracture plane

• We will also have to split a few neighboring 
tetrahedra

𝑖𝑚𝑎𝑔𝑒𝑠: 𝑂′𝐵𝑟𝑖𝑒𝑛, 𝑒𝑡 𝑎𝑙. , 1999



Related Papers

• “Graphical Modeling and Animation of Ductile 
Fracture”, O’Brien, Bargteil, Hodgins, 2002
– Adds plasticity to model elastic->plastic->fracture 

progression

• “Adaptive Tearing and Cracking of Thin Sheets”, 
Pfaff, Narain, de Joya, O’Brien, 2014
– Uses similar approaches on 2D shell elements 

combined with adaptive triangle meshing and bending 
stresses/plasticity to model high resolution cracking 
and plastic deformation behavior for thin materials



Contact Modeling



Contact Modeling

• Collision and contact modeling is a complex subject, 
important to both deformable and rigid body dynamics

• It is generally split into two separate problems, namely 
the geometric problem of contact detection and the 
physics problem of contact response

• Incidentally, we will use the words collision and contact 
interchangeably today. In rigid body dynamics, there is 
more of a need to distinguish between instantaneous 
collisions and finite time contacts, but for deformable 
solids, we will assume finite time contact



Contact Detection

• Contact detection is the geometric problem of determining 
which elements are touching or intersecting others and 
determining specific properties of the contact area

• At the level of tetrahedra, we would want to be able to 
determine if tetrahedron A is intersecting tetrahedron B

• This is a limited form of the more general case of finding 
the intersection of two convex polyhedra, which is a well 
studied problem in computational geometry

• Testing for potential collisions in a set of n tetrahedra is 
effectively an O(n2) problem, but we can reduce this with 
some spatial data structures

• We will come back to some contact detection issues later



Contact Response

• Contact response refers to the computation of 
forces resulting from contact

• This includes forces normal to the contact 
plane responsible for keeping the two objects 
from going through each other as well as 
friction forces in the contact plane that 
oppose sliding motion



Contact Discontinuities

• High quality contact modeling produces 
discontinuities that can be problematic for some 
integrators:
– Velocities normal to the contact plane are 

discontinuous when initial impacts occur
– Tangential velocities can be discontinuous due to 

stick-slip transitions in friction model

• This makes it difficult to use integrators like 
Runge-Kutta or any Adams methods, as they rely 
on some assumption of smoothness to achieve 
their benefits



Contact Modeling

• There are several computational approaches to 
computing contact forces

• The blue Belytschko, 2014 book covers four different 
approaches of varying complexity and capabilities

• We will examine a simple method known as the 
penalty method which just applies large displacement 
dependent forces to counteract any interpenetrations

• More sophisticated methods set up large systems of 
equations and solve exact contact forces in order to 
maintain certain kinematic constraints



Penalty Methods

• We can apply penalties in different ways

• For example, we could just consider the 
vertices of a tetrahedron intersecting the 
volume of another (which is simple to 
compute) and generate a function similar to a 
spring repulsion on the vertex

• A more sophisticated approach would be to 
use the volume of the intersection itself to 
determine the force



Volumetric Penalties

• Assuming we have two interpenetrating tetrahedra, we want to compute a single 
force (& it’s equal and opposite) and the single location where it will apply in order 
to push the two apart

• To do this, we require a convex clipping routine that clips one tetrahedron to the 4 
planes of the other, producing a convex volume for the intersection

• We then need to compute the volume and center of mass of this intersection 
polyhedron to determine the magnitude of the force (which can be a linear 
function of the volume) and the location (center of mass)

• To determine the direction of the force, one can use an area-weighted average of 
the normals of the faces of the polyhedron that came from one of the tetrahedra 
(or some variant of this)



Barycentric Weights

• We want to apply a force at a point inside a tetrahedron and 
have this transfer to a force on each node

• We can use a barycentric weighting for this

• The force on each node is equal to the total force times the 
ratio of the volume of the tetrahedron connecting the point to 
the opposite face over the total volume

• For example, if we apply a force at position 𝐩, we turn this 
into a force 𝐟1 at point 𝐫1 (and similar for 𝐟2 and 𝐟3)

𝐟1 =
𝑇1

𝑇
𝐟𝑡𝑜𝑡𝑎𝑙

𝑇1
𝐫1

𝐟1

𝐟𝑡𝑜𝑡𝑎𝑙

𝐩

𝑇



Friction Forces

• We can use the estimated contact point and contact plane to compute friction 
forces

• The simple but effective Coulomb friction model  says:

𝑓𝑠𝑡𝑎𝑡 ≤ 𝜇𝑠𝑓𝑛𝑜𝑟𝑚
𝑓𝑑𝑦𝑛 = 𝜇𝑑𝑓𝑛𝑜𝑟𝑚

• Where 𝑓𝑠𝑡𝑎𝑡 is the force due to static friction, 𝑓𝑑𝑦𝑛 is the force due to dynamic 
friction, 𝑓𝑛𝑜𝑟𝑚 is the normal force, and 𝜇𝑠 and 𝜇𝑑 are the coefficients of static and 
dynamic friction

• The direction of the force will be opposite of the tangential velocity at the contact 
point

• Dynamic friction isn’t hard to add to the existing penalty force system, but to 
properly model static forces requires more sophisticated constraint handling and 
does not fit well in to a penalty based scheme

• The blue book covers some fancier options



Contact Summary

• With the penalty method, we compute instantaneous forces based 
on the current configuration of the system (just like with elastic 
forces, etc.)

• We can therefore include them in the same loop that we compute 
all other system forces

• To determine the contact forces on an element, we first need to 
identify the elements it is overlapping with

• For each overlapping pair of tetrahedra, we compute the convex 
polyhedron representing the intersection of the two using a 
polygon-plane clipping algorithm

• We then compute the volume, center of mass, and weighted 
average normals to determine the force vector and application 
point

• We then apply equal and opposite penalty forces to the two 
elements at the contact point using a barycentric weighting



Contact Optimization



Contact Detection Performance

• If we have n tetrahedra in our system and any one 
could potentially contact any other, we have an O(n2) 
problem

• We should be able to do better with some intelligent 
data structures

• With an axis-aligned bounding box (AABB) tree, we 
should be able to achieve O(n log n)

• In some cases, we can use spatial hash tables to 
achieve linear O(n) performance

• We will discuss spatial hash tables when we talk about 
particle fluids, so today we’ll look at AABB trees



Axis Aligned Bounding Box

• A single AABB is represented with two 3D 
vectors - one for the min and one for the max 
corner

• Testing box-box overlap is trivial

• The boxes can be grouped into a tree
structure. It is easier to make this a binary
tree, but not strictly necessary

• At the leaf nodes, boxes contain either one or 
a small number of tetrahedra



Axis Aligned Bounding Box Tree
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Tree Construction

• Typical tree construction algorithms operate in either a 
top-down or bottom-up fashion

• Top-down approaches start with the bounding box of
the entire set and recursively split it into smaller boxes

• Bottom-up approaches start by building a box around 
each tetrahedron and them combine nearby boxes to 
form an agglomerated tree

• Both approaches are reasonable. Bottom-up methods 
can tend to produce more efficient tree structures 
leading to faster collision detection, but top-down 
methods tend to be faster to construct



AABB-Tree



AABB-Tree



AABB-Tree



AABB-Tree



AABB-Tree



AABB-Tree



AABB-Tree



AABB-Tree



Intersection Testing

• Once the tree is constructed, we can do a 
recursive tree-tree test to determine all 
overlapping pairs

• There are some versions of this approach that
keep track of information from frame to frame
to cache the most likely areas of intersections 
to improve performance in situations with 
good temporal coherence



Tree Motion Update

• A big advantage to using the AABB tree for collision detection is 
that it can be re-used from frame to frame with minimal effort

• We assume that all of the elements will be moving, and so the 
entire tree will need to be updated

• However, we assume the movement will be small in any one frame, 
and so we can keep the structure of the tree the same and only 
update the boxes

• We perform a bottom-up traversal starting at the leaf nodes
• For each leaf node, we recompute the bounding box around the 

elements
• Each interior node of the tree recomputes its bounding box around 

the box of its child nodes
• When we get back to the top, we’ve updated the entire tree
• This operation is linear in performance O(n)



Tree Reconstruction

• We can use the motion update algorithm to adjust the 
tree from frame to frame

• However, over time, large motions will cause the need 
for the tree structure to be adjusted or rebuilt from 
scratch

• The most basic approach would just be to periodically 
rebuild the tree, maybe every 100 time steps

• A smarter approach would be based on some measure 
of quality degradation, for example by looking at the 
change in the ratio of parent volumes to child volumes 
and rebuilding (possibly only a subtree) as the quality 
degrades beyond some tolerance



Collision References

• A couple references on collision detection 
with deformable models:

– “Efficient BVH-based Collision Detection Scheme 
with Ordering and Restructuring”, Wang, Tang, 
Manocha, Tong, 2018

– “Collision Detection for Deformable Objects”, 
Teschner, et al., 2004


