
Mesh Generation

Steve Rotenberg
CSE291: Physics Simulation

UCSD
Spring 2019



Mesh Generation

• In order to perform elaborate solid mechanics 
simulations, we require complex tetrahedral (or 
hexahedral) meshes

• The production of these meshes falls in the subject of 
mesh generation and is an entire field of its own

• Usually, one wants to start with a surface description 
of a model (perhaps as triangles or NURBS surfaces) 
and build a tetrahedral model of the internal volume

• There may be quality restrictions on the tetrahedra. 
For example, there may be requirements that they be 
within a certain range of sizes and it is often best if 
they are as close to equilateral as possible

• Sometimes, we want the mesh to be graded meaning 
that we want more detail in a particular area of 
interest and we want a smooth gradation of detail 
between the higher and lower detailed areas



Mesh Generation

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒:
𝐻𝑢, 𝑒𝑡 𝑎𝑙. , 2018



Mesh Representation



Vertex Numbering

• Let’s assume we have a mesh of tetrahedra that we are loading from a file 
or generating with a meshing algorithm

• At a minimum, we would represent a model as an array of position vectors 
and an array of tetrahedra, each defined with 4 vertices, which are just 
integers that index into the array of positions

• It is customary to define triangle vertices in a counter-clockwise order, so 
we will define our tetrahedron such that the first 3 vertices define one of 
the triangle faces in counter-clockwise order, and the fourth vertex would 
be the remaining one

𝑣4
𝑣1

𝑣2

𝑣3



Mesh Data Structures

• Obviously, there are many different ways one can 
design the data structures for the mesh

• If one is building a general purpose simulation toolkit, 
it is likely that there would be a desire to be able to use 
meshes for different types of physics problems

• In other words, one could use the same mesh 
generation technology for fluid dynamics, solid 
mechanics, electromagnetics, etc.

• For general systems, it makes a lot of sense to 
decouple the mesh system from the physics system

• For simpler systems that are only focused on a single 
type of problem, it may not be necessary



Mesh Data Structure

• Finite element modeling is computationally demanding, as it is often desirable to 
model fine scale details and thus requires lots of elements

• Therefore, the data structures should be designed with performance taken into 
consideration

• If one is using C++, a mesh element (like a tetrahedron) would require some way 
to reference the nodes. Two common options would be by pointer or by index

• An integer index is probably a better choice for several reasons:
– Allows separate arrays for node data (positions, velocities, etc. can be stored in separate arrays, 

indexed by the integer). This tends to be better for caching performance

– Allows one to use a std::vector to store node data that can dynamically grow if the number of nodes 
increases. Pointers are bad here because the vector may need to reallocate, invalidating any pointers

– Easier to load/save

• In this way, a mesh element like a tetrahedron really reduces to just 4 integers. We 
could create a custom data structure for it that stores these, or we could just store 
one big array of integers in a mesh data structure



Mesh Class

• Perhaps the simplest way to store a mesh of tetrahedra is:

class Mesh {

public:

void AddNode(const glm::vec3 &node);

void AddTetrahedron(uint n0,uint n1,uint n2,uint n3);

private:

std::vector<glm::vec3> Nodes;

std::vector<uint> Tetrahedra; // Number of tetrahedra is size() / 4

};

• Note: uint is an “unsigned int”, or 32-bit positive integer from 0 to ~4.3 billion



Mesh Class

• This is actually a very good approach. It may not 
be the most object oriented way to go, but can be 
very beneficial for performance purposes and 
one can always build a nice interface on top of 
this

• Also, if there is a desire to mix element types, one 
could add more integer arrays:

std::vector<uint> Segments;
std::vector<uint> Triangles;
std::vector<uint> Hexahedra;



Geometric & Topological Queries

• Let’s say we start with a valid tetrahedral mesh, stored as in the previous slide

• There are some basic query operations we might want to do with the mesh (where 
we want to obtain some type of information)

• We might want to obtain boundary information such as:

– All of the triangles that make up the surface of the model

– All of the segments that make up sharp edges on the boundary

– All of nodes that are sharp corners

• We might also want to obtain connectivity information such as

– For each tetrahedron, we might want to know the index of the neighboring tetrahedron 
across each of the 4 faces

– For each vertex, we may want to know which tetrahedra connect to it

• We might also want to compute geometric properties such as

– Tetrahedral volumes

– Tetrahedral coordinate frames

– Triangle normals

• There are good algorithms for precomputing and tabling these things, most 
running in linear O(n) time



Mesh Queries

• It’s nice to separate things like this into their own class to avoid the Mesh class itself from 
getting too big

class MeshQuery {

public:

// Boundary queries

void GetBoundaryTriangles(std::vector<uint> &btris, const Mesh &m);

etc.

// Connectivity queries

void GetFaceNeighbors(std::vector<uint> &fns , const Mesh &m);

etc.

// Geometric queries

void ComputeVolumes(std::vector<float> &vols , const Mesh &m);

etc.

};



Physics on Meshes

• To use a mesh for some type of physics simulation, we need to 
associate additional properties to the mesh, such as
– Node properties: velocity, mass, force…
– Tetrahedral properties: material, undeformed shape, plastic tensor…
– Triangle properties: surface friction…

• In other words, we want to be able to associate arbitrary 
properties (integers, real numbers, vectors, and matrices/tensors) 
to geometric components (nodes, edges, triangles, tetrahedra)

• For caching and computational performance, it is often better to 
store each of these things in its own array. The size of the array will 
match the number of the associated geometry type (i.e., force 
vectors would be stored as an array of 3D vectors where the size of 
the array is the number of nodes in the mesh)

• Again, this leads to an architecture that is still object oriented, but 
in a different way than one might initially expect



Elasticity Example

class ElasticSystem : public PhysicsSystem {

Mesh M;

// Materials

std::vector<Material> Material;

// Node properties

std::vector<float> Mass;

std::vector<glm::vec3> MaterialCoord;

std::vector<glm::vec3> Velocity;

std::vector<glm::vec3> Force;

// Element properties

std::vector<uint> MaterialIndex;

std::vector<glm::mat3> InverseR;

std::vector<float> Volume;

};



SIMD Computation

• For optimal (CPU) performance, its actually better to separate the x, y, and 
z components of the vectors & matrices into their own float arrays

• This is known as structure of arrays form as opposed to array of structures
• This way, one can take maximal advantage of SIMD (single instruction, 

multiple data) instructions and process several elements or nodes at once
• For example, modern Intel CPUs all have the AVX512 instruction set that 

operates on 512-bit vectors containing 16 floats (or 8 doubles)
• Using these, one could process 16 elements/nodes at a time on a single 

core
• Do this in parallel on an 8-core CPU and you can get nearly optimal 

performance
• Caching behavior is also nice as arrays are largely processed in sequential 

order and predictable enough to take advantage of pre-caching as well
• One can also use GPU architectures for large-scale physics simulations



Mesh Generation



Cube Lattice

• A simple way to start off is to build a deformable box out of a 
lattice (3D grid) of box-like cells

• Each cell is built out of 5 tetrahedra: 4 of them from corners 
of the cell and 1 final one in the middle



Mesh Generation

• The more general approach to mesh 
generation is to take a triangular boundary 
mesh as input and construct an internal 
tetrahedral volume mesh as output

• There are various issues to consider relating to 
the input and output mesh properties



Input Mesh Quality

• We will assume that the input mesh is defined as 
a set of triangles

• It might start as higher order curved surfaces 
(NURBS, subdivision surfaces…), but these would 
first be tessellated into triangles

• There are several possible issues one might run 
into with triangle meshes though, and these have 
to be considered, such as:
– T-intersections
– Non-manifold topology
– Interpenetrations



Output Mesh Quality

• We would almost always require that the output mesh is 
build from right-side-out tetrahedra with no 
interpenetrations, and no bad (non-manifold) topology

• Sometimes, it is required that the output mesh retain all of 
the vertices and triangles of the input mesh. Other times, it 
can just be close (i.e., within some geometric tolerance)

• There might be additional restrictions on the output mesh 
related to element size and quality

• For example, it is often desirable that the elements are as 
close to equilateral as possible to improve the accuracy of 
the physics

• It is often a problem to have nearly flat or other nearly 
degenerate shapes



Tetrahedron Quality
• Element quality can affect computational stability and accuracy, and the 

closer elements are to equilateral in their undeformed state, the better

• There are various measures of tetrahedron quality and various ways to 
identify ‘bad’ ones

• “What is a Good Linear Element? Interpolation, Conditioning, and Quality 
Measures”, Shewchuk, 2002, has a detailed discussion on this

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
𝑆ℎ𝑒𝑤𝑐ℎ𝑢𝑘, 2012



Tetrahedralization

• Meshing algorithms usually start by building an 
initial tetrahedralization of the input points

• Some algorithms enforce the boundary triangles 
into the tetrahedralization at the time of initial 
construction, and other algorithms do this as a 
second phase after the initial construction

• Later, we will look at an example of this process in 
2D and then discuss its generalization into 3D



Mesh Refinement

• After the initial tetrahedralization is constructed around the surface 
points, there will usually be many long, thin slivers throughout the 
model

• The algorithms then proceed by inserting additional points within 
the volume and adjusting the connectivity of the mesh accordingly

• Often, the points are inserted so as to force re-arranging the worst 
tetrahedra in the mesh

• Point insertion continues until all tetrahedra are within desired 
quality tolerances

• These are incremental mesh refinement algorithms
• These can also be used dynamically within a simulation to add new 

computational points where the physics requires additional 
accuracy



Mesh Smoothing

• Mesh smoothing algorithms start with an 
input tetrahedral mesh and adjust the interior 
points so as to improve the average quality of 
the tetrahedra

• A pure mesh smoothing algorithm would only 
move points and not adjust the element 
connectivity, but some hybrid smoothing 
algorithms might combine node movement 
with connectivity adjustment



Dynamic Meshing

• Several problems can be modeled by constructing an 
initial mesh and using it throughout the entire 
simulation

• More complex problems may involve the mesh 
changing over time in various ways
– Adaptive meshing: adding/removing points & readjusting 

connectivity to adapt to accuracy requirements
– Fracture: this may involve dynamically splitting elements 

and nodes
– Moving mesh: allowing the underformed version of the 

mesh to change, as with the arbitrary Lagrangian-Eulerian 
method for handling large plastic deformations



Applied Geometry Lab

• A lot of good meshing, geometry processing, 
and physics simulation papers have come 
from Matthieu Desbrun’s Applied Geometry 
lab at Caltech:

• http://www.geometry.caltech.edu/pubs.html

http://www.geometry.caltech.edu/pubs.html


Delaunay Triangulation



Delaunay Triangulations

• We will discuss a classic concept in mesh generation that many algorithms 
are based on, namely the 2D Delaunay triangulation

• They are named after Boris Delaunay for his 1934 work on the subject
• These have been extensively researched and are a good place to start 

when studying meshing algorithms
• The concepts of 2D Delaunay triangulations can be extended into 3D as a 

basis for tetrahedralization algorithms
• Jonathan Richard Shewchuk has done a lot of work on 2D and 3D 

Delaunay mesh generation and refinement. Some classics include:
– “Lecture Notes on Delaunay Mesh Generation”, Shewchuk, 2012
– “Delaunay Refinement Algorithms for Triangular Mesh Generation”, 

Shewchuk, 2001
– “Delaunay Refinement Mesh Generation”, Shewchuk, 1997 (Ph.D. thesis)
– “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric 

Predicates”, Shewchuk, 1997
– See more on his page: http://www.cs.cmu.edu/~jrs/jrspapers.html

http://www.cs.cmu.edu/~jrs/jrspapers.html


Planar Triangulations

• We define a planar triangulation as a set of 2D points 
and a set of counter-clockwise, non-overlapping 
triangles

• The outer boundary forms a polygon that does not 
have to be convex and there may be additional 
polygonal shaped holes removed from the interior

• Some of the points may be on the interior and others 
on the boundary



Circumcircle

• The circumcircle or circumscribed circle of a triangle is the 
unique circle that passes through all three vertices

• The circumcenter of a triangle is the center point of the 
triangle’s circumcircle

𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑟𝑐𝑙𝑒

𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑒𝑛𝑡𝑒𝑟



Circumcircle

• If we draw a line perpendicular to each edge and passing 
through the midpoint, the lines will intersect at the 
circumcenter

• Therefore, we can intersect any two of these lines to compute 
the circumcenter

• The radius of the circumcircle will be the distance from this 
point to any vertex

• We wish to take a triangle defined by points 𝐩1, 𝐩2, and 𝐩3
and find the circumcenter point 𝐜 and radius 𝑟



Circumcircle

𝐬 = 𝐩2 − 𝐩1
𝐭 = 𝐩3 − 𝐩1

𝑑 = 2 𝐬𝑥 𝐭𝑦 − 𝐬𝑦 𝐭𝑥

𝐮𝑥 =
1

𝑑
𝐭𝑦 𝐬𝑥

2
+ 𝐬𝑦

2
− 𝐬𝑦 𝐭𝑥

2
+ 𝐭𝑦

2

𝐮𝑦 =
1

𝑑
𝐬𝑥 𝐭𝑥

2
+ 𝐭𝑦

2
− 𝐭𝑥 𝐬𝑥

2
+ 𝐬𝑦

2

𝑟 = 𝐮 = 𝐮𝑥
2 + 𝐮𝑦

2

𝐜 = 𝐮 + 𝐩1

𝐩1

𝐩3
𝐩2

𝐜
𝑟



Delaunay Property

• The three points of a triangle are on the 
boundary of its circumcircle

• If no other points in the triangulation lie 
within a triangle’s circumcircle, then that 
triangle is said to have the Delaunay property

• If all triangles in the triangulation have the 
Delaunay property, then it is a Delaunay 
triangulation



Delaunay Triangulation

𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 100 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠

𝑠𝑜𝑢𝑟𝑐𝑒:𝑊𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎



Delaunay Triangulations

• Some important & provable properties of Delaunay 
triangulations include:
– Every d-dimensional point set has a Delaunay triangulation 

(may have more than one due to symmetries)

– The Delaunay triangulation maximizes the minimum angle 
of all triangles (Note: it does not necessarily minimize the 
sum of the edge lengths)

– The union of all the simplexes form a convex polygon 
(polyhedron…) around all of the points, called a convex hull

– The number of simplexes in a d-dimensional Delaunay 
triangulation of n points is on the order of O(nd/2)



Edge Flip

• We can convert a non-Delaunay triangulation 
to a Delaunay triangulation by performing a 
sequence of edge flips



Edge Flipping

• Several Delaunay triangulation algorithms are built on 
edge flipping

• A basic method inputs a non-Delaunay triangulation 
and produces Delaunay triangulation

• It tests each of the edges connecting two triangles and 
flips it if necessary (i.e., if the connecting triangles are 
non-Delaunay and the quadrilateral formed by them is 
convex)

• This proceeds until there are no more edges that 
require flipping

• At worst case, it can take O(n2) flips, but usually will 
require much less



Incremental Lawson’s Algorithm

• One can also use an incremental edge flipping method called Lawson’s 
algorithm to construct Delaunay triangulations from scratch

• It is an incremental algorithm that inserts one point at a time and 
maintains the Delaunay property as it goes

• It starts by initializing a large square from two triangles - much larger than 
the bounding box of the set of points so that every added point is within 
an existing triangle

• When a point is inserted, we find the triangle containing the point and 
split it into three new triangles

• We then examine each new triangle and see if it violates the Delaunay 
property. If it does, we perform the edge flip

• The algorithm propagates outward to neighboring triangles recursively 
until no more violations are found

• After all points are inserted, the final triangulation is trimmed from the 
large outer square by removing all triangles connected to the corners

• Note: named for Charles Lawson, 1977



Lawson’s Algorithm

• We start with a valid Delaunay triangulation



Lawson’s Algorithm

• Insert the new point



Lawson’s Algorithm

• Split the triangle containing the point into 3 
new triangles



Lawson’s Algorithm

• Flip any neighboring edges as needed



Lawson’s Algorithm

• Flip edges until we have a valid Delaunay 
triangulation



Algorithm Performance

• In a large triangulation, we can expect each new point insertion to cause a 
relatively small number of edge flips

• Some insertions will not require any and others may require over 10, but 
on average, there will be just a few

• The performance of the point insertion is therefore roughly constant for a 
single point, assuming we know which triangle the point falls within

• Finding this triangle is actually the slower part of the algorithm, and 
different approaches exist to optimize it

• Overall, building a complete Delaunay triangulation with the incremental 
Lawson’s algorithm should perform better than O(n2)

• There are numerous other algorithms for building Delaunay triangulations 
and many will outperform this one

• Still, this algorithm and related edge flipping approaches are very general 
purpose and can be used for building initial meshes, refining mesh quality, 
dynamically adapting meshes during simulation, fixing distorted meshes, 
and more



Algorithm Robustness

• It’s worth mentioning a few things about robustness of meshing 
algorithms

• Floating point accuracy can be a big issue in computational 
geometry algorithms and care must be taken to ensure that floating 
point roundoff doesn’t cause them to fail

• Often, geometric algorithms require making decisions based on 
some geometric measurement (i.e., is the point above or below 
some plane). These decisions need to be made in a consistent way 
and are often crucial to the success of the algorithm.

• It is common to try to design an algorithm to rely on a small 
number of these geometric predicates, and to implement each of 
them as carefully as possible, sometimes resorting to the use of 
exact arithmetic when necessary

• Computational geometry is an entire subject of its own, and the 
design of robust algorithms is central to it



Constrained Delaunay

• A constrained Delaunay triangulation is a triangulation 
that enforces the existence of certain specified line 
segments input to the algorithm

• It may not be perfectly Delaunay in most cases, but it 
should be as close as possible

• The input to a 2D constrained triangulation is called a 
planar line segment graph (PLSG) and contains a set of 
points and line segments connecting the points. One 
would expect that there would not be any intersecting 
line segments, but if there were, they could be pre-
processed by having new points inserted at the 
intersection, etc.



Constraint Enforcement

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 2. 𝑓𝑜𝑟𝑐𝑒 𝑒𝑑𝑔𝑒 𝑓𝑙𝑖𝑝 3. 𝑓𝑜𝑟𝑐𝑒 𝑒𝑑𝑔𝑒 𝑓𝑙𝑖𝑝

4. 𝑓𝑜𝑟𝑐𝑒 𝑒𝑑𝑔𝑒 𝑓𝑙𝑖𝑝 5. 𝑓𝑖𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑑 𝑓𝑙𝑖𝑝 6. 𝑐𝑙𝑒𝑎𝑛 𝑢𝑝 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦
𝑤ℎ𝑒𝑟𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒



Void Removal

• Often, Delaunay algorithms build a 
triangulation over all of the input points

• This may include areas that are supposed to 
be removed, like interior holes

• It is common for algorithms to wait until the 
end and then remove these by recursively 
propagating out from boundary triangles

• This may also apply to the exterior triangles if 
the algorithm started with a large square



Advanced Delaunay Algorithms

• Lawson’s algorithm is a reasonable foundation, but 
many other approaches exist

• For example, advancing front approaches involve 
presorting the inserted points along one or more axes 
or by spatial proximity and incrementally growing the 
mesh

• Delaunay triangularizations and tetrahedralizations are 
key computational geometry algorithms used in physics 
and many other fields of computation

• They are a well studied problem and many different 
algorithms and implementations exist, such as versions 
optimized for parallel systems, GPUs, etc.



Extension to 3D

• We looked at 2D constrained Delaunay triangulation using Lawson’s 
algorithm with constraint enforcement

• These concepts can be extended into 3D

• The 2D circumcircle can be extended to a 3D circumsphere, etc.

• The edge flip concept can also be generalized into n-dimensions

• The 3D extension of Lawson’s algorithm can get stuck in cyclic loops and 
isn’t guaranteed to terminate, but one can make some minor 
modifications to fix this

• Unlike the 2D version, the 3D version can run into geometric situations 
that actually require insertion of additional points to mesh correctly, but 
this is a manageable problem as well



Mesh Refinement & Smoothing



Delaunay Refinement

• Delaunay algorithms often begin by triangulating the input set 
of points, which usually only exist on the boundary

• In order to maintain uniform element size and quality, it is 
necessary to insert additional points inside the volume

• Delaunay refinement algorithms start with a poor quality 
mesh and insert new points, maintaining the Delaunay 
property, and improving mesh quality

• A classic algorithm for this is Ruppert’s algorithm

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
𝑆ℎ𝑒𝑤𝑐ℎ𝑢𝑘, 2012



Ruppert’s Algorithm

• Ruppert’s algorithm takes a constrained Delaunay mesh as input and adds 
new points in order to refine the mesh so that no triangle has an angle 
less than some input tolerance 𝜃𝑚𝑖𝑛

• The basic idea starts by putting all triangles that violate the tolerance on a 
sorted queue

• Working from the top of the list, points are inserted at the circumcenter of 
the worst offending triangle (using Lawson’s or similar incremental point 
insertion)

• If the new point is within the circumcircle of a constraint edge, the edge is 
split instead of inserting the point

• As new triangles are formed from edge flips, they are tested for violation 
of the tolerance and added to the queue if necessary

• The algorithm terminates when the queue is empty (and as long as 
𝜃𝑚𝑖𝑛 < 34.3°)

• J.R.Shewchuk made several refinements to the algorithm to handle cases 
where input data had sharp angles below the tolerance



Ruppert’s Algorithm

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
𝑆ℎ𝑒𝑤𝑐ℎ𝑢𝑘, 2012



3D Delaunay Refinement

• The mesh refinement process can be 
extended to 3D as well

• Shewchuk did a lot of work in this area

• See his papers listed on the earlier slide for an 
overview of 2D Delaunay triangulation, 
Ruppert’s algorithm, and 3D extensions



3D Delaunay Refinement

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
𝑆ℎ𝑒𝑤𝑐ℎ𝑢𝑘, 2012



Mesh Smoothing

• Mesh smoothing algorithms move nodes of a 
mesh to improve the quality

• Some will also update the connectivity
• Some hybrid approaches combine smoothing and 

refinement
• There are many smoothing approaches including:

– “Interleaving Delaunay Refinement and Optimization 
for Practical Isotropic Tetrahedron Mesh Generation”, 
Tournois, Wormser, Alliez, Desbrun, 2009

– “Variational Tetrahedral Meshing”, Alliez, Cohen-
Steiner, Yvinec, Desbrun, 2005



Mesh Smoothing

• One simple method from the “Variational Tetrahedral Meshing”, 
2005 paper computes a new position for each vertex based on the 
average of connected tetrahedra circumcenters, weighted by the 
tetrahedral volumes

𝐱′𝑖 =
1

Ω𝑖
෍

𝑇𝑗∈Ω𝑖

𝑇𝑗 𝐜𝑗

• Where 𝐱′𝑖 is the new position for vertex 𝑖, Ω𝑖 is the set of 
tetrahedra connecting to vertex 𝑖, 𝐜𝑗 is the circumcenter of 
tetrahedron 𝑇𝑗, and 𝑇𝑗 and Ω𝑖 are the volumes of the 
tetrahedron 𝑇𝑗 or set Ω𝑖

• They also extend this to handle graded meshes and more



Adaptive Meshing

• Adaptive meshing refers to enhancing the mesh on the fly 
during the simulation in order to improve detail in areas 
that require it

• In can involve dynamically adding or removing detail as 
necessary (similar to adaptive time stepping integrators 
increasing or decreasing the time step to achieve accuracy 
goals)

• We can base the decision to subdivide an element on Taylor 
series estimations of the error induced by the mesh 
approximation

• Variables assigned to geometry created in this process need 
to be assigned by interpolation from nearby points



Tetrahedral Meshing in the Wild



“Tetrahedral Meshing in the Wild”

• We will take a look at the recent paper by 
Hu, Zhou, Gao, Jacobson, Zorin, and 
Panozzo, 2018

• There have been many papers on 
tetrahedral meshing over many years

• This is a very state of the art paper that 
attempts to address many of the limitations 
that previous algorithms run into when 
running on actual real-world data

• The paper is posted in the “Papers” section 
on the class web page

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒:
𝐻𝑢, 𝑒𝑡 𝑎𝑙. , 2018



Tetrahedralization

• Previous approaches to the problem often 
would run into trouble when the input model 
was less than perfect

• This would include problems such as:

– Non-manifold topology

– Interpenetrations



Key Features

From the paper:

• “We consider the input as fundamentally imprecise, allowing 
deviations from the input within user-defined envelope of size ϵ;

• We make no assumptions about the input mesh structure, and 
reformulate the meshing problem accordingly;

• We follow the principle that robustness comes first (i.e., the 
algorithm should produce a valid and, to the extent possible, useful 
output for a maximally broad range of inputs), with quality 
improvement done to the extent robustness constraints allow.

• While allowing deviations from the input, which is critical both for 
quality and performance, we aim to make our algorithm 
conservative, using the input surface mesh as a starting point for 3D 
mesh construction, rather than discarding its connectivity and using 
surface sampling only.”



Input & Output

• The input is a ‘triangle soup’ which refers to a collection of 
triangles with no restrictions on connectivity or self-
intersection

• The also require two constants: a geometric tolerance 𝜖
and a target edge length ℓ

• They output an ‘approximately constrained 
tetrahedralization’ that:
– Contains an approximation of the input triangles to within 

tolerance 𝜖
– Has no inverted elements
– Enforces all edge lengths to be less than ℓ
– Optimizes mesh quality within these constraints



Approach

• The first phase of their algorithm builds a BSP tree (binary space partition) 
based on the input points, and tetrahedralizes the convex leaf volumes

• It is implemented using exact rational arithmetic, where numbers are 
represented as 𝑎/𝑏 where 𝑎 and 𝑏 are arbitrary length integers

• They also have a nice method for enforcing that triangles from the input 
are represented in the tetrahedralization to within the geometric 
tolerance and is tolerant of cracks and other imperfections

• In the second phase, they improve the quality of the mesh through a 
process that combines local operations such as edge splitting, edge 
collapsing, face swapping, and vertex smoothing

• The second phase also converts the data to regular floating point while 
retaining geometric robustness

• After the mesh is refined, they extract the final tetrahedral with a void 
removal process that is tolerance of non-manifold input geometry



“Tetrahedral Meshing in the Wild”

𝐼𝑚𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒:
𝐻𝑢, 𝑒𝑡 𝑎𝑙. , 2018


