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Linear Elastic Simplex Elements

• In the previous lecture, we looked at how to 
compute linear elastic forces in a single tetrahedron 
and then used that to compute elastic behavior of 
objects built with tetrahedral meshes

• This is a example of the finite element method (FEM)

• Today, we will look at ways to extend this to add 
more capabilities



Advanced Material Properties

• Elasticity refers to the property of a material to deform 
under applied forces and return to its original shape when 
the forces are removed

• In addition to elastic behavior, we can model:
– Damping
– Plasticity
– Fracture
– Other internal properties (viscoelasticity, hyperelasticity, creep, 

fatigue, thermodynamics…)
– Complex materials (composites, laminates, granular materials…)

• We can add collision and contact forces as well, but these 
are a bit different in that they are not based internal 
stresses within the material but on externally applied forces



Advanced Elements

• We can move beyond the basic simplex elements (segment, triangle, 
tetrahedron) in two main ways:

– Non-simplex

– High order elements

• Non-simplex elements include other basic shapes such as 3-prisms and 
hexahedra

• High order elements use additional vertices to define curved edges and 
surfaces defined by nonlinear functions (such as with quadratic or cubic 
functions)

3 − 𝑝𝑟𝑖𝑠𝑚 ℎ𝑒𝑥𝑎ℎ𝑒𝑑𝑟𝑜𝑛 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑡𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑜𝑛



Recommended Reading

• “Nonlinear Finite Elements for 
Continua and Structures”, 
Second Edition

• Belytschko, Liu, Moran, 
Elkhodary, 2014



Damping



Conservative Systems

• The 1D Hooke’s Law (f=-kx) relates a force to a 
displacement

• The force relates to acceleration through Newton’s 
Second Law (f=ma)

• Ultimately, this relates acceleration to position, which 
leads to a second order ordinary differential equation

• In other words, the second derivative of a value is 
dependent on the value itself

• If all of the accelerations (forces) in the system can be 
expressed as functions of only the positions, then we 
will have a system that conserves energy known as a 
conservative system



Non-Conservative Systems

• In any real system, we will gradually loose mechanical energy to 
various forms of friction, such as contact friction or internal 
damping

• These always generate heat as energy is converted from kinetic to 
thermal forms

• We could model all of the thermal-mechanical interactions and 
account for the energy, but often times we won’t bother and we 
will just ignore any heat created

• In these cases, we would gradually loose energy in the system, and 
so we would have a non-conservative or dissipative system

• The forces of these damping interactions are dependent on 
velocities rather than positions

• These lead to ODEs where the second derivative of a value is 
dependent on the first derivative (and the value itself)



Modeling Damping

• To model damping, we will be looking at node velocities rather than 
positions

• The 1D linear damping model is:

𝑓 = −𝑘𝑑𝑣

• Where 𝑘𝑑 is the damping constant and 𝑣 is the velocity
• This works just like Hooke’s Law except it replaces the displacement 

𝑥 with the first derivative of displacement 𝑣 (it also uses a different 
constant)

• Just like we extended f=-kx to 3D in the last lecture, we can do the 
exact same thing for damping

• We just have to replace a bunch of position values with velocities 
and use a different set of constants



Linear Damping

• We can use a simple linear damping model that works 
almost a exactly like linear elastic model except it uses 
particle velocities in the equations instead of particle 
positions

• It also uses an additional set of damping constants that 
relate velocity to stress. Like elasticity, there could be up to 
21 constants for anisotropic materials, but only 2 are 
needed for isotropic materials

• We used the 6x6 symmetric stiffness tensor 𝐊 to store the 
stiffness constants that relate strains to stresses

• We will define a 6x6 symmetric damping tensor 𝐃 to store 
the damping constants that relate strain rates to stresses



*Strain Rate Tensor

• We will define the strain rate tensor in a similar 
way as the strain tensor, except based on the 
particle velocities instead of the positions

• There are different ways to do this that will result 
in different constants in the D matrix. A 
reasonable approach to generating the strain rate 
tensor is just to use the derivative of the strain 
tensor itself

𝛎 =
𝑑𝛆

𝑑𝑡



Stress Calculation

• The geometric deformation (measured by the 
strain tensor) of the material will cause internal 
elastic stresses

• The velocity gradient (measured by the strain rate 
tensor) will cause additional viscous stresses

• All together, our linear elastic-damping model 
looks like:

𝛔 = 𝐊 ∙ 𝛆 + 𝐃 ∙ 𝛎



Plasticity



Plasticity

• Plastic deformation is the re-arrangement of molecules in a 
solid material leading to a permanent change of shape

• For example, if we bend a spoon slightly, it will undergo 
elastic deformation, but if we bend it harder, we will cause 
a permanent kink resulting from plastic deformation

• The yield stress is the internal stress level where the 
material begins to deform plastically

• This is obviously a crucial value to understand in structural 
and mechanical engineering because it represents the 
maximum stress a material can handle before failing



Basic Plasticity Model

• A basic plasticity model can be found in the paper: 
“Graphical Modeling and Animation of Ductile Fracture” by 
O’Brien, Bargteil, and Hodgins, 2002

• They extend their brittle fracture paper from 1999 by 
adding plastic deformation to their model which already 
included elasticity and fracture

• Ductile fracture happens in materials that first undergo 
plastic deformation before fracturing, leading to permanent 
deformations around the fractures (such as with metals)

• This is in contrast to brittle fracture which happens in 
materials that don’t experience significant plastic 
deformation before fracturing (such as glass)



Basic Plasticity Model

• They start with the assumption that the strain 𝛆 in any 
element is the sum of elastic 𝛆𝑒 and plastic 𝛆𝑝 components:

𝛆 = 𝛆𝑝 + 𝛆𝑒

• Each element stores a plastic strain tensor 𝛆𝑝 which 
represents the amount of permanent deformation the 
element has undergone. This would typically be initialized 
to 0

• The total strain 𝛆 is just the geometric measure of the 
deformation that we can compute as we did in the previous 
lecture (i.e., using Green’s strain tensor)



Elastic Yielding

• The paper defines an additional material property 𝛾1 called the 
elastic limit

• This is a geometric (strain-based) tolerance that determines where 
purely elastic behavior ends and plastic deformation begins

• They compute the deviation of the elastic strain as:

𝛆 ′ = 𝛆 𝑒 −
Tr 𝛆 𝑒

3
𝐈

• Where Tr( ) is the trace of a matrix (sum of the diagonal elements)
• If the magnitude (Frobenius norm) 𝛆 ′ is greater than 𝛾1, then 

plastic deformation occurs, otherwise, only purely elastic forces are 
computed using the elastic strain tensor



Plastic Update

• If yielding occurs, the plastic strain is updated according to:

∆𝛆𝑝 =
𝛆′ − 𝛾1
𝛆′

𝛆′

• They also introduce a material property 𝛾2 called the plastic 
limit, a geometric (strain-based) limit that restricts the 
maximum plastic deformation allowed according to:

𝛆𝑝 ≔ 𝛆𝑝 + ∆𝛆𝑝 min 1,
𝛾2

𝛆𝑝 + ∆𝛆𝑝



Advanced Plasticity

• Advanced plasticity models can include:
– Creep: the gradual permanent deformation resulting from 

long-term stresses below the yield stress. Creep tends to 
increase with heat. There are numerous creep and related 
models including: dislocation, Nabarro-Herring, solute 
drag, dislocation clime-glide, Harper-Dorn, sintering…

– Viscoelasticity & viscoplasticity: mixtures of elastic, 
viscous, and plastic behavior in materials. An example of a 
viscoelastoplastic material is silly putty. When rolled into a 
ball, silly putty will bounce similar to a rubber ball and 
undergo very large but rapid forces that result in little 
permanent deformation. However, applying a small force 
over a longer time can result in significant permanent 
deformation



Mesh Deformation

• Under very large plastic deformations, the finite 
element mesh itself can become very distorted, leading 
to topological and accuracy problems

• Adaptive meshing schemes can dynamically adjust the 
mesh by splitting and combining nodes and elements 
based on deformation or error metrics

• Arbitrary Lagrangian-Eulerian (ALE) formulations allow 
for the material coordinates of the nodes to vary over 
time as well as the world positions. This allows the 
mesh to remain more regular even under extreme 
deformations



Nonlinear Materials



Material Models

• We do not need to limit ourselves to simple 
linear elastic materials

• We can experiment with different nonlinear 
models to simulate a much wider range of real 
materials

• These can include effects of plastic 
deformation, hysteresis, damping, fatigue, and 
other phenomena



Constitutive Models

• Within the subject of finite elements, the term constitutive 
model refers to the mathematical model defining the key 
relationships within a particular type of material

• In other words, it would define the type of strain and stress 
tensors to use as well as the stress-strain relationship, and 
any other relevant material processes (such as plasticity) 
and their associated variables

• Throughout FEM literature, there are many different 
constitutive models used

• The “Nonlinear Finite Elements for Continua and 
Structures” book has a chapter detailing several popular 
models



Strain Tensors

• We looked at the simple Green’s strain tensor in the last lecture

𝛆 =
1

2
𝐅𝑇 ∙ 𝐅 − 𝐈

• There are several other strain tensors that are in use for different situations

• If we are dealing with very small (or infinitesimal) strains, we can use the infinitesimal strain tensor:

𝛆 =
1

2
𝐅𝑇 + 𝐅 − 𝐈

• For larger deformations, there are a variety of other options such as Cauchy-Green, finger tensor, 
Cauchy deformation tensor, Green-St. Venant, Green-Lagrange, etc.

• These are all different ways to measure the same geometric deformations (namely scales & shears)

• For a strain tensor to be useful, it must:
– Vanish to 0 for purely rigid motions

– Must depend on 𝐅 in a continuous, differentiable, monotonic way

– Reduce to the infinitesimal strain tensor for small 𝐅



1D Strain Variations

• If we want, we could use a different way to measure the strain as the ratio of the current length to 
the rest length:

෤𝑥 =
𝐫1 − 𝐫2
𝑙0

− 1

• And we could use a different but similar looking spring equation (not Hooke’s Law)

𝑓 = −𝑘 ෤𝑥

• It turns out that this should even have some advantages over the previous way we did this, in that 
this method scales more appropriately to different rest length springs. In other words, if you took a 
large spring and cut it into two smaller springs, then put them back together, you would expect it to 
behave like the original spring. This method will lead to that behavior.

• In any case, we are just approximating a smooth function with a straight line (as the first two terms 
in a Taylor series)

• This is how we can justify Hooke’s Law (or variations like the one above) as a reasonable 
approximation of what is really a nonlinear equation



Stress Variations

• We used the Cauchy stress tensor, which is quite common
• There are also other stress tensors such as Kirchhoff, nominal stress, Piola-

Kirchhoff, PK2, Biot, etc.
• The reason we have several strain and stress tensors to choose from is 

that it is common practice to stick with linear relationships between the 
strains and stresses in order to keep the number of constants and material 
properties to a minimum (this also makes it easier to measure real world 
properties)

• If we change the strain and stress tensors themselves, we can control the 
nonlinear function that ultimately relates the deformation to the forces

• As we are ultimately just approximating the stress-strain relationship with 
a linear relationship, this gives us the ability to model several nonlinear 
relationships while keeping things relatively simple

• Note: https://en.wikipedia.org/wiki/Stress_measures has a good summary 
of stress measures and a table that converts any one to any other

https://en.wikipedia.org/wiki/Stress_measures


Corotational Frames

• One common approach to modeling stress-strain relationships that 
adapts well to large deformations is the use of corotational frames

• With this concept, we think of the deformation gradient 𝐅 as being 
decomposed into a orthonormal pure rotation and a un-rotated 
pure deformation:

𝐅 = 𝐐 ෨𝐅

• This allows us to make larger deformations and more accurately 
compute node forces resulting from them

• In order to use this, we first compute 𝐅 as before, but then we have 
to use a polar decomposition to extract out the rotation 𝐐



Mass Matrix

• Finite element methods evaluate strains and stresses within elements and 
ultimately produce forces at the nodes

• So far, we’ve assumed that a node represents a particle where the mass is 
concentrated at a single point

• This leads to a straightforward f=ma relationship for the entire system of particles 
where each particle has its own mass and we can easily compute 3D particle 
acceleration 𝐚 from a 3D force 𝐟 as:

𝐚 =
1

𝑚
𝐟

• We can extend 𝐚 and 𝐟 to be n-dimensional vectors representing the entire system 
of particles where n is 3 times the number of particles and 𝐌 is a diagonal matrix 
of particle masses (x3)

𝐚 = 𝐌−1𝐟

• As this matrix is diagonal, we don’t really need to invert it or even store it as a 
matrix, as only the diagonal is non-zero



Lumped vs. Consistent Mass Matrix

𝐚 = 𝐌−1𝐟

• If 𝐌 is diagonal, then we are explicitly modeling the system as 
concentrated point masses (particles) connected by massless 
tetrahedral elements

• This is known as a lumped or diagonal mass matrix
• This may be accurate enough for many problems, especially if we 

are already using lots of small elements
• However, we can improve upon this by using a consistent mass 

matrix which attempts to represent the mass as being distributed 
uniformly through the solid leading to a more accurate stress-
acceleration relationship as well as better angular momentum 
conservation

• There are different methods for computing this based on element 
type and other variations



Statics, Modal Dynamics, & 
Thermodynamics



Transient Dynamics

• Most of this course focuses on transient 
dynamics of mechanical systems which refers 
to non-periodic dynamics of motion in the 
time domain

• But let’s take a quick look at a couple 
peripheral topics:
– Statics

– Modal dynamics

– Thermodynamics



Statics

• Statics forces within a stable configuration such as a 
structure

• It is commonly used to analyze buildings and bridges

• From a physics point of view, statics can just refer to a 
dynamic system that has come to rest through some 
energy loss process (friction, damping…)

• From a computational point of view, we can actually 
just model it as dynamic system (maybe with some 
extra damping) and wait for it to stop moving

• However, we can also use some other approaches



Statics

• Remember that a static object will be feeling 
the force of gravity, and will therefore 
experience some deformation

• For buildings and bridges, this deformation 
will be small, but measurable

• In static simulations, we have to allow some 
deformation in order for the stresses to 
develop within the model



*Statics



Modal Dynamics

• Modal dynamics refers to the study of periodic 
motion, such as vibrations in a solid

• We can do some interesting things here 
without requiring much more than we’ve 
already covered

• If we are assuming vibrations, we can usually 
make the assumption of small deformations, 
which justifies the use of linear elastic models



1D Vibration

• Let’s say we have a 1D spring with length 𝑙0 and stiffness constant 𝑘
• The spring has one end fixed and a 1D particle of mass 𝑚 on the 

other end
• The particle’s position is 𝑥 and will be 0 when the spring is at rest 

length. The fixed end of the spring is at −𝑙0, and so the particle 
position x is also the displacement of the spring

• In this case, the force on the particle is f=-kx
• We apply Newton’s Second Law (f=ma) to this and get the second 

order ODE:

𝑎 =
𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥



Simple Harmonic Oscillator

𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥

• This is the equation of a simple harmonic oscillator
• This ODE can be solved exactly as:

𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜑

• Which is a periodic sinusoid with amplitude 𝐴, phase offset 𝜑 and 
frequency 𝜔, where

𝜔 =
𝑘

𝑚



3D Vibration

• In the 1D linear elastic case, we can exactly compute 
the periodic properties

• We can extend this idea into 3D and exactly compute 
the periodic properties of a tetrahedral element

• We can even do this for entire meshes of elements and 
analytically (symbolically) compute exact vibration 
properties of geometrically complex 3D solids

• This allows us to analyze oscillations in everything from 
structures, to vehicles, to musical instruments



*3D Modal Analysis



Sound Wave Modeling

• One very interesting application of modal dynamics is in modeling 
sounds of objects

• We can start with a 3D solid model of an object, and then apply a 
modal analysis to determine the vibration modes

• We can then construct a particular vibration response to an input 
impulse (i.e., if we hit the object at some location, we can 
determine the resulting vibration patterns)

• We can then construct the sound waves that would radiate from 
the vibrating shape, thus determining what sound it will make

• When we hit our virtual object in different locations, we hear 
different sounds

• This approach has also been extended to handle sounds generated 
from fluids as well



Thermodynamics

• We could add thermal properties to our solids and model additional 
behaviors
– Energy lost to damping would lead to warming
– Thermal diffusion: heat will move throughout solids and gradually 

approach equilibrium
– Heat will be gained/lost at the surface due to convective & radiative 

transfer
– Temperature changes could affect material constants (Young’s 

modulus, plasticity constants, etc.)
– Temperature changes could ultimately lead to melting or boiling, but 

that really requires fluid dynamics which we haven’t covered yet

• It would require adding a temperature variable to every particle and 
some additional material constants

• To model any of these behaviors, one can start with a simple linear 
model and move on to more advanced models as needed



Element Types



Non-Simplex Elements

• We can use more elaborate element types than tetrahedra, such as 3-prisms and 
hexahedra

• Their rest state does not have to be a regular shape (i.e., the hexahedron doesn’t 
have to be a cube when undeformed)

• In practice, these tend to produce better results than just modeling the equivalent 
out of several tetrahedra

• This occurs for various reasons, but one important reason is that tetrahedra are 
limited to having constant strain & stress throughout the entire element, while 
these other types model a smoothly varying stress/strain field, leading to 
potentially higher accuracy

3 − 𝑝𝑟𝑖𝑠𝑚 ℎ𝑒𝑥𝑎ℎ𝑒𝑑𝑟𝑜𝑛



Hexahedral Elements

• Consider a hexahedral element, which is a 6-faced element like a deformed box

• We would not have to assume that the stress/strain is constant

• In fact, each corner has enough information to be able to compute a local 
stress/strain for that region

• We can analyze the deformation of each corner in essentially the same way we did 
for an entire tetrahedron by using the corner and the 3 connecting points

• The corner stress/strain values can be interpolated through the element in a 
trilinear fashion, leading to a smoothly (trilinear) varying stress/strain field

ℎ𝑒𝑥𝑎ℎ𝑒𝑑𝑟𝑜𝑛



*High Order Elements

• We can also use quadratic and cubic (etc.) functions to define the deformation of 
an element

• We create additional points that aren’t on the corners, but behave the same as 
any other particle in the model

• In FEM terminology, these are referred to as quadrature points, which is a 
mathematical term meaning a point where an integral is evaluated

• The quadratic tetrahedron pictured has 10 quadrature points, and the hexahedron 
from the previous page has 8

• A tetrahedron has only 1 because we effectively evaluate the tensors and 
stress/strain relationship once and it is constant across the entire element

• There are several different schemes describing a range of element types with a 
variety of different quadrature options…

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑡𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑜𝑛



*Nonlinear Finite Elements

• There are some nice general schemes for 
combining these different element types 


