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Homogeneous Transforms

• In 3D graphics and physics, we often need to move virtual objects around 
in a virtual space

• It is common to use 4x4 homogeneous matrix transforms to accomplish 
this

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
𝑎𝑤 𝑏𝑤

𝑐𝑧 𝑑𝑧
𝑐𝑤 𝑑𝑤

• With these transforms, we can combine an arbitrary sequence of 
rotations, translations, scales, and shears

• They can also be used for perspective viewing transforms or any 
combination of these different operations

• Note: we can also do reflections, which are just scales by negative values



Affine Transformations

• We will not be dealing with viewing projections, as we are mainly 
interested in using transforms to move things around

• Therefore, we will not be using the bottom row of the matrix and it 
will almost always be 0 0 0 1

• This will limit us to rotation, translation, scale, and shear

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

• The set of matrices in this form is known as the affine group
• An affine transformation will preserve parallel lines (i.e., two 

parallel lines will still be parallel after an affine transformation)



Vector Transformations

• Let’s say we have 3D vector 𝐯 representing a point on some object, defined in the 
objects local coordinate system

• We also have a 4x4 matrix 𝐌 representing how the object is transformed into the 
global (world) coordinate system

• To transform local 𝐯 into world space 𝐯′, we have to momentarily turn 𝐯 into a 4D 
vector 𝐯4 and place a 1 in the 4th coordinate

𝑣′𝑥
𝑣′𝑦
𝑣′𝑧
1

= 𝐯′4 = 𝐌 ∙ 𝐯4 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

𝑣𝑥
𝑣𝑦
𝑣𝑧
1

• If we always have 0 0 0 1 in the bottom row of M, then v’4 will always have a 1 in 
the 4th coordinate as well 

• For this reason, we will bend notation rules by combining 3D vectors and 4x4 
matrices and write transforms like this:

𝐯′ = 𝐌 ∙ 𝐯



Position vs. Direction Vectors

𝐯′ = 𝐌 ∙ 𝐯 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

𝑣𝑥
𝑣𝑦
𝑣𝑧
1

• We see that the transformed vector v’ will be rotated, scaled, and sheared by the 
3x3 abc portion of the matrix and will be translated by the d vector

• This works fine for vectors representing positions, but not for vectors representing 
directions (like an axis of rotation)

• For directional vectors, we only want the 3x3 portion to affect direction, and we 
want to ignore the translation

• For a directional vector w, we expand it with a 0 in the 4th coordinate:

𝐰′ = 𝐌 ∙ 𝐰 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

𝑤𝑥

𝑤𝑦

𝑤𝑧

0



Column Vectors

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

• If M is a matrix that transforms from an object’s local frame to the 
world frame, then the 4 column vectors (a, b, c, & d) will have a 
direct geometric interpretation

• d will be the translation vector
• a, b, and c are what you get if you transform the x, y, and z axes by 

matrix M
• In other words, they represent the object’s local x, y, and z axes, 

transformed into world space



Coordinate System Visualization

• We will start with a basic right-handed 3D coordinate system

• Direction vectors are represented with arrows and position 
vectors are small circles

• We will use an XYZ->RGB color scheme

𝐱 =
1
0
0

𝐲 =
0
1
0

𝐳 =
0
0
1

𝑜𝑟𝑖𝑔𝑖𝑛 𝟎 =
0
0
0



Matrix Visualization

• If we have a matrix 𝐌 that transforms an object from its local (object 
space) coordinate system into the global (world space) coordinate system

• It’s column vectors are 𝐚, 𝐛, 𝐜, and 𝐝

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

𝐯

𝑙𝑜𝑐𝑎𝑙 𝑓𝑟𝑎𝑚𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑟𝑎𝑚𝑒

𝐯′ = 𝐌 ∙ 𝐯

𝐝
𝐜 𝐛

𝐚

𝟎

𝟎

𝐌 =



Rigid Transformations

• If our affine matrix M is further limited to only having rotations and 
translations (no scales or shears), it will be in the rigid transformation 
group

• In this case, the column vectors a, b, and c will be limited to unit length 
(no scaling) and they will be 90 degrees apart (the dot products a·b, a·c, 
and b·c will be 0)

• A rigid object has 6 degrees of freedom: 3 translations and 3 rotations
• The matrix M may still have 12 variable numbers, but there are 6 rigidity 

constraints applied:

𝐚 ∙ 𝐚 = 𝐛 ∙ 𝐛 = 𝐜 ∙ 𝐜 = 1
𝐚 ∙ 𝐛 = 𝐚 ∙ 𝐜 = 𝐛 ∙ 𝐜 = 0

• This also means that the upper 3x3 portion of the 4x4 matrix is 
orthonormal



Non-Rigid Transformations

• If our affine matrix M contains scaling and shearing, then it is a non-
rigid transform and is effectively a linear deformation

• It has 12 degrees of freedom (3 rotations, 3 translations, 3 scales, 3 
shears), and has 12 independent variables in the matrix

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

• Keep in mind that although the translation can easily be extracted 
as the d vector, the rotations, scales, and shears are intertwined in 
the a, b, and c vectors and don’t have a one-to-one correspondence



Linear Elasticity



Elasticity

• Elasticity refers to the property of a material 
to deform under force and return to its initial 
shape when the force is removed

• We’ve talked about elastic springs, which are a 
1D idealization

• Today, we will be interested in full 3D elasticity 
in order to model deformable solids



Elastic Materials

• We can treat many materials (and the objects 
made from those materials) as purely elastic as 
long as we aren’t deforming things too much

• This includes metals, concrete, plastic, glass, 
carbon fiber, cloth, paper, rubber, etc., etc.

• It doesn’t include fluids like air or water

• Even foams and granular materials like mud can 
be approximated as elastic as long as we keep the 
deformation to a minimum



Non-Elastic Properties

• Let’s say we have a metal object like a spoon
• If we bend it just a little bit and then let go, it will  return back to its 

original shape. If we hold one end and bang it on the table, it will oscillate 
back and forth making an audible tone. These are purely elastic behaviors

• If we bend it too much, we will cause a permanent kink, known as a plastic 
deformation

• If we bend it back and forth quickly, we will generate heat, which involves 
coupling of mechanics and thermodynamics

• If we keep bending it, it will develop metal fatigue, resulting in permanent 
weakening

• If we pull or shear it hard enough it will eventually fracture
• These are all non-elastic behaviors of materials that we will cover in more 

detail in the next couple lectures
• For today, we will stick to elasticity and more specifically, linear elasticity



Hooke’s Law

• We looked at springs in the first lecture:

𝑓 = −𝑘𝑥

• Where 𝑓 is the resulting force, 𝑘 is the spring constant and 𝑥 is the 
displacement

• This is the 1D version of Hooke’s Law
• We could write it in a 3D vector form as 𝐟 = −𝑘𝐱, which is still a 1D spring 

but oriented in 3D space
• Note: this is sometimes written as 𝑓 = 𝑘𝑥 which is just another way of 

looking at it. If you think of f as the force required to cause the 
displacement, you would use this version. If you think of it as the force 
resulting from the displacement, you would use 𝑓 = −𝑘𝑥. Remember 
Newton’s Third Law says every action has an equal and opposite reaction, 
so both forms are valid



Linear vs. Nonlinear

• Hooke’s Law assumes a linear relationship between force and displacement

• This is reasonable for small displacements, but clearly can’t work forever

• A real spring, for example, will eventually get fully stretched and the force will 
grow much faster than linear

• Eventually, the spring will break and the force will go to 0 permanently

• If the spring is compressed too much, the coils will eventually touch and the force 
will once again grow much faster than linear until the metal in the spring gets 
squashed

• In other words, real springs are definitely nonlinear, but we can still treat them as 
linear if we keep the displacement within a small enough range

• Hooke’s Law is effectively using the first two terms of a Taylor series to 
approximate a nonlinear spring function 𝑓

𝑥

𝑠𝑙𝑜𝑝𝑒 = −𝑘



Strain

• The term strain refers to the geometric 
measurement of deformation

• The displacement 𝑥 in the linear spring equation 
is a 1D form of strain

• If the spring connects two particles at positions 𝐫1
and 𝐫2, then we can measure the strain 𝑥 as the 
difference between the rest length 𝑙0 and the 
current length:

𝑥 = 𝐫1 − 𝐫2 − 𝑙0



Stress

• The term stress refers to the physical forces 
resulting from deformation

• In other words, we could describe Hooke’s 
Law as a type of stress-strain relationship

• We will extend the concepts of stress and 
strain into 3D, resulting in a generalized form 
of Hooke’s Law



1D Elastic Simulation

• We talked about 1D springs that connect between two 3D particles
• A 1D linear elastic spring has two constants:

– A spring constant 𝑘 defining the stiffness
– A rest length 𝑙0 defining the rest shape (i.e., when it is not deformed)

• When we simulate with a spring:
1. We first measure the strain by comparing its current length to its rest length
2. We then apply the stress-strain relationship (f=-kx) to compute the force
3. We then turn this into the forces acting on the two particles

• The forces will be equal and opposite, and so will cancel out, causing no 
net change in momentum

• We do this for every spring in the system. When we’re done computing all 
of the forces in the system, we can integrate to move the system to the 
next time step

rest state deformed state



3D Elastic Simulation

• 3D solid body simulation extends this exact same process into 3D

• Instead of 1D springs connecting two particles, we will use 3D tetrahedral 
elements to connect four particles

1. We first compute the strain by comparing the current shape of a tetrahedron 
to its rest shape

2. We then apply a stress-strain relationship to compute the internal stress

3. We then turn this stress into forces at the four particles

• The forces will all add up to 0, thus causing no net change in momentum

rest state deformed state



Linear Elasticity

• If we use a linear relationship between the 
strain and stress, we are operating in the 
domain of linear elasticity theory

• Linear elasticity is essentially a generalization 
of Hooke’s Law to 3-dimensional solids



Finite Elements



Simplex Elements

• We can use the term simplex to describe these n-dimensional versions of a 
triangle:

– 0-simplex: point

– 1-simplex: segment

– 2-simplex: triangle

– 3-simplex: tetrahedron

– etc.

• In physics simulation, we’ll refer to these as elements and for today, we’ll 
mainly use tetrahedral volume elements (3-simplex)

• When speaking more abstractly, we’ll refer to the vertices as nodes, but 
we’ll also refer them as particles



Finite Elements

• We can partition the volume of a 3-dimensional object into tetrahedral 
elements and then run physics on these individual elements to 
approximate the physics of the entire model

• We are essentially taking a continuous material with potentially 
infinitesimal detail and discretizing it into finite sized bits for practical 
computation

• If we use lots of small elements, we can capture more detail and increase 
the accuracy, but it will be more computationally expensive

• This is an example of the finite element method (FEM) used throughout 
physics and mathematical modeling

• Today, we will discuss finite elements in their simplest context, limiting 
them to linear elastic simplex elements

• In the next lecture, we will generalize this to allow for more complex 
material modeling with nonlinear, non-simplex elements and more…



Surface/Shell Elements

• We used 1D simplex elements already to model 
springs

• We can also model thin surfaces in 3D space 
using 2D triangular shell elements

• This is a better way to model cloth than using a 
network of 1D springs as we’ve previously done

• In fact, we can easily combine 1D, 2D and 3D 
elastic elements in the same simulation to model:
– 1D ropes, cables, poles, beams
– 2D cloth, paper, sheet metal, thin walls
– 3D jello, concrete blocks, other solids



Mesh Representations

• There are different approaches to representing meshes of finite elements
• In the last lecture, we discussed architectural approaches to decoupling 

the integrator from the physics system
• It can also be a good idea to decouple the mesh from the physics
• This way, we can use the same mesh data structures for solid mechanics, 

thermodynamics, fluid dynamics, or other 3D field equations 
(electromagnetics, etc.)

• Also this makes it easy to separate out complex geometric operations such 
as mesh generation into their own library that only has to deal with 
meshing and not physics

• We will discuss this more when we talk about mesh generation in a later 
lecture

• For today, we’ll keep it simple and just assume we have an array of 
particles and an array of elastic tetrahedra that connect 4 particles, similar 
to the way we described particles and springs in the first lecture



Vertex Numbering

• Let’s assume we have a mesh of tetrahedra that we are loading from a file 
(or generating with a meshing algorithm…)

• At a minimum, we would represent a model as an array of position vectors 
and an array of tetrahedra, each defined with 4 vertices, which are just 
integers that index into the array of positions

• It is customary to define triangle vertices in a counter-clockwise order, so 
we will define our tetrahedron such that the first 3 vertices define one of 
the triangle faces in counter-clockwise order, and the fourth vertex would 
be the remaining one

𝑣4
𝑣1

𝑣2

𝑣3



Tetrahedral Frame

• We can build a 3x3 matrix out of three edge direction vectors to create a 
tetrahedral frame 𝐓

• If 𝐫𝑛 is the 3D position of the vertex indexed by 𝑣𝑛, then we can compute 
the matrix 𝐓 as:

𝐞1 = 𝐫1 − 𝐫4

𝐞2 = 𝐫2 − 𝐫4

𝐞3 = 𝐫3 − 𝐫4

𝐓 =

𝐞1𝑥 𝐞2𝑥 𝐞3𝑥
𝐞1𝑦 𝐞2𝑦 𝐞3𝑦
𝐞1𝑧 𝐞2𝑧 𝐞3𝑧

𝐫4
𝐫1

𝐫2

𝐫3

𝐓
𝐞1

𝐞2

𝐞3



Volume of a Tetrahedron

• The volume of a tetrahedron is:

𝑣𝑜𝑙 =
1

6
𝐞1 × 𝐞2 ∙ 𝐞3

• We should get a positive number if we followed our numbering 
convention

• If we get zero or a negative number at any point in the simulation, it 
means the tetrahedron has been flattened or turned inside out, 
which can be a problem

• For linear elastic models, the volume change should be limited to a 
minimal amount during the simulation (maybe 5-10%)

𝐞1

𝐞2

𝐞3



Strain Computation



Strain Computation

• We wish to partition a deformable volumetric 
object into a set of tetrahedra

• For each tetrahedron, we need to:

1. Measure the deformation (strain)

2. Relate that to the internal forces (stress)

3. Turn the internal stress into forces on the 
particles

• We start by examining step 1 in detail



Material Space

• If we are to analyze the deformation of a tetrahedron, 
we need some representation of its undeformed state 
to compare to

• We consider that the undeformed tetrahedron is a 
finite piece from a larger undeformed block of material

• We represent the undeformed tetrahedron as four 
coordinates in this material space

• Each vertex 𝑣𝑛 in the deformable model has a current 
position 𝐫𝑛 in world space as well as its original 
position 𝐦𝑛 in material space

• This is similar to the concept of texture coordinates in 
computer graphics



Material & World Space (2D)

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑤𝑜𝑟𝑙𝑑 𝑠𝑝𝑎𝑐𝑒

𝐦2

𝐦1

𝐦3

𝐫1

𝐫2

𝐫3



Material & World Space (3D)

𝐦4

𝐦1

𝐦2

𝐦3

𝐫1 𝐫2

𝐫3𝐫4

𝑟𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑒 (𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑝𝑎𝑐𝑒) 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 (𝑤𝑜𝑟𝑙𝑑 𝑠𝑝𝑎𝑐𝑒)



Rest Tetrahedral Frame

• We can define a rest tetrahedral frame 𝐑 as the 3x3 matrix 
built from the material coordinates 𝐦𝑛 of the tetrahedron 
vertices

• This is just like the tetrahedral frame 𝐓 calculation from few 
slides back, but applied specifically to the coordinates of the 
tetrahedron in its rest (underformed) state

𝐦4

𝐦1

𝐦2

𝐦3

𝐞1

𝐞2

𝐞3

𝐑



Deformation Gradient

• In the undeformed (rest) state, the material 
frame is lined up with the XYZ axes, and is 
represented as an identity matrix 𝐈

• When the tetrahedron is deformed, this 
material frame deforms with it

• The deformed material frame is represented 
as matrix 𝐅, which transforms into the 
deformed world space configuration

• 𝐅 is also known as the deformation gradient



Deformation Gradient

• F represents the deformed material frame in world space. We 
will refer to its column vectors as 𝐚, 𝐛, and 𝐜:

𝐅 =

𝑎𝑥 𝑏𝑥 𝑐𝑥
𝑎𝑦 𝑏𝑦 𝑐𝑦
𝑎𝑧 𝑏𝑧 𝑐𝑧

𝐦4

𝐦1

𝐦2

𝐦3

𝐫1 𝐫2

𝐫3𝐫4

𝐜

𝐚

𝐛

𝑟𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑒 (𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑓𝑟𝑎𝑚𝑒) 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 (𝑔𝑙𝑜𝑏𝑎𝑙 𝑓𝑟𝑎𝑚𝑒)

𝐅
𝐈 𝐱

𝐲

𝐳



Deformation Gradient

• The deformation gradient is a transformation from the 
underformed material frame into the deformed frame. It will 
take a point relative to 𝐈 and place it relative to 𝐅

• We need to compute 𝐅 from things we have available (such as 
the current and rest tetrahedral matrices)

• We can do this by transforming into the rest frame (i.e., by 
𝐑−1) and then transforming by 𝐓:

𝐅 = 𝐓𝐑−1

• Note that 𝐑−1 is constant, as it is based on the material 
coordinates. It can therefore be precomputed and stored for 
each element



Deformation Gradient

𝐅 = 𝐓𝐑−1

– 𝐈: underformed material frame (identity matrix)

– 𝐅: deformed material frame

– 𝐑: rest tetrahedral frame

– 𝐓: current tetrahedral frame

𝑟𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑒 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑠𝑡𝑎𝑡𝑒

𝐅

𝐓

𝐈

𝐑 𝐫1 𝐫2

𝐫3𝐫4

𝐦4

𝐦1

𝐦2

𝐦3



Strain Computation

• The deformation gradient 𝐅 represents the material frame 
deformed into world space

• It has 9 unique numbers that encode 3 rotations, 3 scales, 
and 3 shears

• We have already removed the 3 translations by using a 3x3 
instead of a 4x4 matrix

• We want to remove the 3 rotations, as pure rotation won’t 
cause any deformation, and therefore, no stress or forces

• We want to extract the 3 scale and 3 shear values and 
represent them in some useful form

• We refer to this general process as strain computation
• In order to compute the strain on an element, we first must 

agree as to exactly how we will represent that strain



Strain Tensor

• Most solid mechanics formulations represent the geometric 
strain measure as a symmetric n x n strain tensor, where n
is the number of dimensions

• In 3D space, this leads to a 3x3 matrix, but because it is 
symmetric, it contains only 6 unique numbers (NOTE: an n-
dimensional strain tensor will have n(n+1)/2 unique 
numbers)

• These 6 numbers measure the 6 degrees of deformation
• In general they will represent the 3 scales (squash/stretch 

along X, Y, or Z) and 3 shears (XY, XZ, or YZ plane)
• However, there are actually different methods for 

measuring them that can have different properties



Green’s Strain Tensor

• A common, classical way to measure strain is with Green’s strain tensor, 𝛆
• The symmetric 3x3 Green strain tensor is based on the (asymmetric) 3x3 

deformation gradient 𝐅:

𝛆 =
1

2
𝐅𝑇 ∙ 𝐅 − 𝐈

𝛆 =
1

2

𝐚 ∙ 𝐚 − 1 𝐚 ∙ 𝐛 𝐚 ∙ 𝐜
𝐛 ∙ 𝐚 𝐛 ∙ 𝐛 − 1 𝐛 ∙ 𝐜
𝐜 ∙ 𝐚 𝐜 ∙ 𝐛 𝐜 ∙ 𝐜 − 1

• The diagonal values measure the scale deformation along the a, b, and c vectors: 0 
for no scaling, positive for stretching, negative for compressing

• The off-diagonal values measure the shears in the ab, ac, and bc planes: 0 for no 
shear, positive when the two axes form an acute angle, negative when the two 
axes form an obtuse angle. The off diagonal values are symmetric, and so there are 
only 3 unique values (i.e., 𝐚 ∙ 𝐛 = 𝐛 ∙ 𝐚, etc.)



Strain Computation

• There are various other strain tensors used in 
solid modeling and we will discuss a couple of 
them in the next lecture

• For today, we’ll use Green’s strain tensor

• Once again, we will try to limit the amount of 
deformation, as it is not intended to handle 
large deformations



Strain Computation Summary

• For each element:
– Gather the 4 vertex positions into vectors 𝐫1…𝐫4
– Compute edge vectors 𝐞1…𝐞3 and build tetrahedral frame 𝐓

𝐞1 = 𝐫1 − 𝐫4
𝐞2 = 𝐫2 − 𝐫4
𝐞3 = 𝐫3 − 𝐫4

𝐓 =

𝐞1𝑥 𝐞2𝑥 𝐞3𝑥
𝐞1𝑦 𝐞2𝑦 𝐞3𝑦
𝐞1𝑧 𝐞2𝑧 𝐞3𝑧

– Compute deformation gradient 𝐅 using precomputed 𝐑−1

𝐅 = 𝐓𝐑−1

– Compute Green’s strain tensor 𝛆

𝛆 =
1

2
𝐅𝑇 ∙ 𝐅 − 𝐈



Stress Tensor



Cauchy Stress Tensor

• Stress is a measure of the physical forces within a deformed solid and is ultimately 
due to intermolecular attraction/repulsion forces

• There are different ways to represent it, but a common method used when 
deformations are small is with the Cauchy stress tensor: 𝛔

• The Cauchy stress is a measure of the force acting on a differential area in a 
deformed solid

• It is often written as a 3x3 symmetric tensor (matrix):

𝛔 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

• It is actually a measure of pressure and has units of force per area, or N/m2

• If an object is not deformed, then the stress is 0 everywhere

• If it is deformed in some way, the stress will vary throughout the solid



Pressure on a Plane

𝛔 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

• The traction pressure 𝐭 is the vector force per 
unit area on an arbitrary plane with normal 𝐧
within the material. It is equal to:

𝐭 = 𝛔 ∙ 𝐧



Force on a Tetrahedral Face

• Let’s say we have a deformed tetrahedron that has a constant 
stress tensor 𝛔 throughout

• To compute the total force on one of the triangular faces, we 
compute the unit-length normal 𝐧 in the material space, then 
compute the traction force per area 𝐭 = 𝛔 ∙ 𝐧, multiply by the 
total area 𝑎 of the triangle, and then transform into world 
space by 𝐅 resulting in:

𝐟 = 𝐅 ∙ 𝑎𝛔 ∙ 𝐧

rest state deformed state

𝐧
𝐟



Force on a Triangular Face
• Say we have a triangular face with three material coordinates 𝐦1, 𝐦2, and 𝐦3, arranged in 

counter-clockwise order when viewed from the outside of the tetrahedron. The unit-length 
normal would be:

𝐧 =
𝐦2 −𝐦1 × 𝐦3 −𝐦1

𝐦2 −𝐦1 × 𝐦3 −𝐦1

• And the area would be:

𝑎 =
𝐦2 −𝐦1 × 𝐦3 −𝐦1

2

• Since we’re just going to multiply these together as 𝐟 = 𝑎𝛔 ∙ 𝐧, we can save some work and 
use the area weighted normal 𝐧∗ to compute the total force on the triangle face as:

𝐧∗ =
1

2
𝐦2 −𝐦1 × 𝐦3 −𝐦1

𝐟 = 𝐅 ∙ 𝛔 ∙ 𝐧∗

• Note: because 𝐧 is always length 1.0, it has no units. The area weighted normal 𝐧∗ has units 
of length2, or area



Finite vs. Infinitesimal Strain

• The Cauchy stress tensor is intended for small 
deformations

• The Green strain tensor we looked at earlier is 
actually meant for moderate deformations

• There are other strain and stress tensors and 
relationships that are designed for larger 
deformations

• We will look at these further in the next lecture, 
but today we’ll assume fairly small deformations



Stress-Strain Relationship



Stress Vector

• The 3x3 symmetric stress tensor 𝛔 has 6 unique numbers

𝛔 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

• We can rearrange this into a stress vector 𝛔

𝛔 =

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦

=

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

• This is known as Voigt notation



*Strain Vector

• The same can be done with the strain tensor 𝛆

𝛆 =

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧

• We can rearrange this into a strain vector 𝛆

𝛆 =

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦

=

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

• In this case, we multiply three of the vector elements by 2 (why?)



Stress-Strain Relationship

• If we assume a linear relationship between the 6 
strains and 6 stresses, we could use as many as 36 
constants to represent the stress-strain relationship

• This would be expressed as a 6x6 matrix known as a 
stiffness tensor 𝐊

𝛔 = 𝐊 ∙ 𝛆

• It turns out that this matrix will be symmetric, so the 
number of unique constants is actually 21 for a general 
linear elastic stress-strain relationship



Stiffness Tensor

• Our generalized Hooke’s Law relates stresses 𝛔 to strains 𝛆:

𝛔 = 𝐊 ∙ 𝛆

• Expanded out, we can see the general form of the stiffness tensor 𝐊
has 21 unique constants:

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

=

𝑘11 𝑘12 𝑘13
𝑘12 𝑘22 𝑘23
𝑘13 𝑘23 𝑘33

𝑘14 𝑘15 𝑘16
𝑘24 𝑘25 𝑘26
𝑘34 𝑘35 𝑘36

𝑘14 𝑘24 𝑘34
𝑘15 𝑘25 𝑘35
𝑘16 𝑘26 𝑘36

𝑘44 𝑘45 𝑘46
𝑘45 𝑘55 𝑘56
𝑘46 𝑘56 𝑘66

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6



Isotropic Materials

• An isotropic material is a material whose properties are 
invariant with respect to rotation

• In other words, the material does not have any 
inherent orientation

• For example, metals, plastic, concrete, and glass are 
generally isotropic

• Wood, however, is anisotropic in that it has a grain 
direction, and so the orientation of the grain will affect 
the material properties

• Crystals are also anisotropic as are some construction 
materials like fiberglass and carbon fiber



Anisotropic Materials

• A general anisotropic material could have a full 21 
unique constants in the stress-strain relationship

• There are several sub-groups of these however, with 
fewer constants:
– Orthotropic: these have 3 orthogonal planes of symmetry 

and requires 9 unique constants

– Transverse isotropic: these are isotropic around a single 
axis, like a parallel bundle of fibers and requires 5 unique 
constants

• Isotropic materials require only 2 unique constants



Isotropic Stiffness Tensor

• The isotropic version of the stiffness tensor looks like 
this:

𝐊 =

2𝜇 + 𝜆
𝜆
𝜆
0
0
0

𝜆
2𝜇 + 𝜆

𝜆
0
0
0

𝜆
𝜆

2𝜇 + 𝜆
0
0
0

0
0
0
𝜇
0
0

0
0
0
0
𝜇
0

0
0
0
0
0
𝜇

• Where 𝜇 and 𝜆 are the Lamé constants



Isotropic Material Properties

• We saw how to build the K matrix based on the isotropic Lamé constants 𝜇
and 𝜆, however these constants don’t have a very intuitive meaning

• We can rearrange some of the equations to base these on some more 
intuitive constants:
– Young’s modulus 𝐸: This is similar to the original 1D spring constant k in that it relates 

the uniaxial stress 𝜎 to the strain 𝜀 with: 𝜎 = 𝐸𝜀

– Poisson ratio 𝜈: This is a measure of how much the material resists changes in volume 
and ranges from -1 to 0.5 (usually from 0 to 0.5). A perfectly incompressible material will 
have a 𝜈 = 0.5 and a perfectly compressible material will have 𝜈 = 0

• To compute the Lamé constants from the Young’s modulus and Poisson 
ratio:

𝜆 =
𝐸𝜈

1 + 𝜈 1 − 2𝜈

𝜇 =
𝐸

2 1 + 𝜈



Isotropic Stress-Strain Relationship

• If we are using isotropic materials, we can 
actually represent the stress-strain relationship a 
little easier as:

𝛔 = 2𝜇𝛆 + 𝜆trace 𝛆 𝐈

• Where trace 𝛆 is the sum of the diagonal 
elements of 𝛆

• This skips the Voigt notation and the 6x6 matrix



Materials

• The stiffness tensor 𝐊 can be precomputed and stored for each 
unique material in the system

• There are several different ways to construct the 𝐊 matrix 
depending on the material properties

• For this and other reasons, it is nice to have a material class that 
stores all material properties (like density and the Lamé, Young, or 
Poisson constants) and also stores a precomputed 𝐊 matrix

• Individual elements can reference a material instead of storing the 
properties directly

• This also makes it easier to add a user interface for tuning material 
properties

• Also, as one adds more complex physics such as plasticity and 
fracture, additional properties can be added to the material



Stress Computation Summary

• To summarize the isotropic stress computation:
1. Compute stress tensor using:

𝛔 = 2𝜇𝛆 + 𝜆trace 𝛆 𝐈

• To summarize the anisotropic stress computation:
1. Arrange the strain tensor 𝛆 into vector (Voigt) form 𝛆
2. Compute the stress vector 𝛔 using:

𝛔 = 𝐊 ∙ 𝛆

3. Arrange vector 𝛔 into matrix form 𝛔



Node Force Computation



Force Computation

• For each tetrahedron in our deformable 
object, we need to:

1. Compute the strain tensor

2. Compute the stress tensor

3. Compute the forces on the nodes

• So far, we covered 1 & 2 in detail



Node Forces

• Once we have the stress tensor, we can proceed 
to computing the forces on the nodes (particles)

• For small deformations, this is actually pretty 
easy

• We already showed how to compute the total 
force on a triangular face of a tetrahedron

• By Newton’s Third Law, if this force is distributed 
to the three nodes making up the triangle, then 
the equal and opposite force must apply to the 
fourth node, (the one that isn’t on the triangle)



Node Force Computation

• We saw how to compute the total force on the triangle face as:

𝐧∗ =
1

2
𝐦2 −𝐦1 × 𝐦3 −𝐦1

𝐟𝑡𝑟𝑖 = 𝐅 ∙ 𝛔 ∙ 𝐧∗

• Then the force on the opposite node 𝐫4 is therefore:

𝐟𝑛𝑜𝑑𝑒 = −𝐅 ∙ 𝛔 ∙ 𝐧∗

rest state deformed state

𝐧𝐟𝑡𝑟𝑖

𝐟𝑛𝑜𝑑𝑒

𝐫4

𝐫1

𝐫2

𝐫3



Node Force Summary

• To summarize the node force computation for a tetrahedron:
– For each of the four nodes:

1. Select 𝐦1′, 𝐦2′, and 𝐦3′ from the original 𝐦1-𝐦4 as the three nodes on the opposite 
triangle face arranged in counter-clockwise order

2. Compute node force:

𝐧∗ =
1

2
𝐦2′ − 𝐦1′ × 𝐦3′ − 𝐦1′

𝐟𝑛𝑜𝑑𝑒 = −𝐅 ∙ 𝛔 ∙ 𝐧∗

3. Apply (add) force 𝐟𝑛𝑜𝑑𝑒 to the particle associated with the node

• Note: 𝐧∗ can be precomputed for each face
• Note: this method is only valid for small deformations, where 𝐅 is nearly 

orthonormal. Larger deformations will require some modifications to this



Elastic Body Simulation



Elastic Simulation

• We’ve now seen the whole process of how to 
compute the forces acting on the nodes of a 
deformed tetrahedron

• If our model connects up many tetrahedra, we 
just do this for each one, adding up all the 
forces, and then integrate the motion of the 
particles using the integrator of our choice

• There are still a few more details to cover 
regarding the initialization of the model



Particle Masses

• Let’s assume that each tetrahedral element is made a material with 
density 𝜌 (kg/m3)

• The mass of an element would be the volume of the undeformed 
tetrahedron times 𝜌

• As there are 4 particles to a tetrahedron, this mass should be 
distributed equally to the 4 particles

• To initialize all particle masses in the entire model, we first set them 
to 0. We then loop through all elements. We compute the element 
mass and add ¼ to each of its 4 particles. When we finish looping 
through the elements, all particle masses in the model will be set

• While we’re looping through the elements, we can also precompute 
and store 𝐑−1 for each one, as well as the area weighted normal 𝐧∗

for each face



Summary

• Here is a summary of the process. Note, this uses a simple built-in forward 
Euler integration. To adapt to more complex integrators, separate out the 
force computation and use a more general integration architecture

• Initialize
– Load/generate mesh & material properties
– Precompute element rest properties (volume, 𝐑−1, 𝐧∗)
– Initialize particle masses
– Set initial particle positions & velocities

• Simulate
– While(not finished)

• ComputeForces() {
– For each element

» Compute strain tensor
» Compute stress tensor
» Compute and apply node forces

• IntegrateForwardEuler()



Limits of Linear Elasticity

• The linear elastic model we looked at today works OK 
as long as we minimize the deformation of any one 
tetrahedron

• It doesn’t handle large deformations very well, but we 
can still get some nice behaviors with the model

• As mentioned in the beginning, it leaves out a lot of 
interesting material behaviors (plasticity, fatigue, 
fracture, thermodynamics, etc.)

• We also haven’t talked about collisions

• But it is a great place to start and a foundation for 
more complex modeling


