
Integration

Steve Rotenberg
CSE291: Physics Simulation

UCSD
Spring 2019



Integration

• Physics simulation in the Newtonian realm 
involves working with forces

• As we’ve seen, forces relate to accelerations 
through Newton’s Second Law f=ma

• Ultimately however, we need to compute 
positions in order to advance the simulation 
forward and visualize what’s happening

• Position is the integral of velocity and velocity is 
the integral of acceleration

• Therefore, the process of integration will be 
central to physics simulation



Analytical (Symbolic) Integration

• If we have a relatively simple mathematical function, we can usually compute an 
analytical integral

• For example, if our function is a polynomial like:

𝑓 𝑡 = 3𝑡2 + 4𝑡 + 5

• then we can compute the integral as

න𝑓 𝑡 𝑑𝑡 = 𝑡3 + 2𝑡2 + 5𝑡 + 𝑐

• Analytical integration calculates an exact solution to the integral.

• NOTE: The usage of the word analytical is consistent with its usage in this field, 
and is often used in discussions of analytical vs. numerical methods. Some people 
prefer the term symbolic, as analytical has a different meaning in mathematics, 
relating to analytic functions.



Numerical Integration

• However, many mathematical functions can’t be integrated analytically, 
and this applies to most of the situations we’ll be interested in.

• We will also often have to deal with forces that are generated by 
processes other than mathematical functions. For example, we might have 
an interactive vehicle simulation where the throttle setting is controlled by 
a human operator. We clearly won’t find a mathematical equation that 
defines the throttle as a function of time.

• Therefore, we will accept that we will rely on numerical integration
techniques throughout the entire quarter.

• Numerical integration uses iteration and approximation to compute “brute 
force” results, and so can suffer from problems with accuracy and stability.

• Still, we have little choice if we want to simulate complex problems, so we 
must understand these properties in order to make use of numerical 
integration techniques.



Numerical Dynamics Simulation

• In general, the process of numerical dynamics simulation can be 
summarized as:

Specify initial conditions for time t0

While (not finished) {
• Evaluate all forces in current configuration at time tn (and possibly other 

nearby times) and use these to compute all accelerations
• Integrate accelerations over some finite time step Δt to advance everything 

to new positions (and velocities) at new time tn+1

• Display/store/analyze results

}

• NOTE: Technically, this refers to an explicit integration method vs. 
an implicit one which looks similar. More on this later.



Area Under a Curve

• Remember that the integral of a function is equal to the area 
under the curve defined by the function

• One way to approximate the integral is to slice it up into a 
bunch of rectangles (or trapezoids) and add up their areas

• This works well for explicit functions where we can evaluate 
the function at any point

• We can apply a similar idea to differential equations (with 
some modifications)

Image source: Wikipedia



Ordinary Differential Equations

• A differential equation is an equation that 
relates a function with its derivatives

• An ordinary differential equation (ODE) is a 
differential equation with one or more 
functions of one independent variable (and 
the derivatives of those functions)

• For example, the motion of a 3D particle can 
be described as 3 separate equations of one 
variable, and so qualifies as an ODE



Partial Differential Equations

• A partial differential equation (PDE) is a 
differential equation that contains functions of 
multiple variables and their partial derivatives

• These show up in field equations such as in 
fluid dynamics

• We will get to these later in the quarter

• Many of the integration methods we will look 
at today apply to both ODEs and PDEs, but we 
will mainly stick to discussing ODEs today



Initial Value Problems

• An initial value problem is a differential equation 
where the value of the unknown function is 
specified at some point in the domain

• In physics, we would usually be referring to the 
time domain, and the value we will specify would 
usually be at the initial time

• The dynamics equations we will look at 
throughout the quarter will [almost] always be 
initial value problems



Initial Value Problems

• The general approach to evaluating initial value 
problems is similar to the way we calculate the area 
under a curve

• We start an initial value specified at the initial time
• We then evaluate the derivatives at the current time, 

and then advance forward by some time step and 
approximate the value at the new time

• This repeats until we decide we’re done
• Each time step is effectively adding one more rectangle 

to compute the area under a curve
• By using smaller time steps, we can expect to achieve 

better accuracy



Stability

• There are several potential problems we need to know 
about

• One of those is the issue of stability
• If our time step is too large, this can lead to big 

accuracy problems or even lead to the simulation 
‘blowing up’

• For example, if we’re trying to simulate a very high 
frequency oscillation (like a tuning fork vibrating) with 
time steps larger than oscillation period itself, we will 
run into big problems

• In fact, the time step should be significantly smaller 
than the period to ensure stability



Stiffness

• A stiff problem refers to a problem that requires very small time 
steps to achieve stability

• It’s actually a fairly vague term without a precise definition, but it 
generally means that we need to look very seriously at the 
integration process and possibly resort to specialized methods

• Very small time steps will not only lead to slow simulations, but can 
actually get to the point where floating point roundoff will start to 
dominate and cause its own share of problems

• In physics, stiff problems show up when we have very stiff 
materials, such as springs with very high spring constants. It is often 
easier to simulate soft spongy materials compared to stiff ones

• We will look at some integration techniques that are designed to 
address stiff problems



Accuracy

• Another issue that we need to consider when 
choosing an integration scheme is accuracy

• In general, using smaller time steps will improve 
the accuracy of any integration scheme (up to the 
point where roundoff errors start to dominate)

• However, some schemes are inherently more or 
less accurate than others, and accuracy usually 
comes at a price of additional computation



Approximation Order

• The local truncation error of an integration scheme is 
the approximation error made in a single step

• It is the difference between the numerical solution 
after one step from the exact solution

• It is common to compare an integration scheme to the 
full Taylor series expansion of the solution

• Approximation schemes will be the same (or similar) to 
a truncated Taylor series (i.e., only the first few terms 
of the Taylor series)

• The truncated part represents the error, which will be a 
function of ∆𝑡𝑛 where n is the first truncated term



Approximation Order

• For example, consider the Taylor expansion of the function 𝑦 𝑡 near 𝑡0:

𝑦 𝑡0 + ∆𝑡 = 𝑦 𝑡0 + 𝑦′ 𝑡0 ∆𝑡 +
1

2
𝑦′′ 𝑡0 ∆𝑡2 + 𝑂 ∆𝑡3

• Where 𝑂 ∆𝑡3 refers to additional terms based on ∆𝑡3 or higher powers

• The forward Euler method we looked at briefly in the last lecture approximates this with just:

𝑦 𝑡0 + ∆𝑡 = 𝑦 𝑡0 + 𝑦′ 𝑡0 ∆𝑡

• In other words, we are dropping all 𝑂 ∆𝑡2 terms or higher, which implies the error is on the 
order of ∆𝑡2

• Thus, the forward Euler method is known as a first order method, in that it is accurate up to 
𝑂 ∆𝑡

• Higher order methods will not always be more accurate in all cases, but they should have 
much better convergence towards an accuracy as ∆𝑡 gets smaller



Time Steps

• We have seen that the choice of time step can have significant 
implications on:
– Stability
– Accuracy
– Performance

• Usually, one has some upper limit on the time step. For example, if 
we ultimately want to produce a 30 frame per second animation, 
we would have 1/30 sec as our upper limit

• Stability and accuracy however, might require a smaller time step
• In some cases, one can simply choose a time step that works and 

stick with that
• In other cases, it is best to allow the system to change the time step 

automatically in order to adapt to the change. We will look at 
adaptive time step schemes later in the lecture



CFL Condition

• In a lot of situations, one can actually calculate what the time step 
should be in order to achieve accuracy and stability

• The ideal time step will change as the simulation proceeds, and 
needs to be re-evaluated each step of the simulation

• For example, in a mass-spring simulation, one can base some of 
these calculations on the ratio of the spring stiffness constants to 
the masses of the particles

• In field equations (like fluid dynamics), one can base these on the 
Courant-Friedrichs-Lewy (CFL) condition

• As field equations are typically solved on some sort of grid, the 
condition ensures that the time step is chosen so as to prevent 
anything from moving more than the distance of the grid size in a 
single time step

• We will examine the CFL condition in more detail when we talk 
about fluids and field equations



Real Time Stepping

• When doing an interactive simulation, it is tempting to use the real time clock to 
determine the time step

• This is usually a bad idea unless certain precautions are taken
• One big problem is that the operating system might need to do some work that 

causes a brief pause in the simulation
• For example, in most systems, dragging the window around with the mouse will 

cause the program to pause. When the drag is finished, the simulation gets a 
single frame with a very large time step, potentially causing major instability

• For this reason, you definitely want to put some sort of upper limit on the time 
step

• Another option is to run multiple small steps to add up to the total step (known as 
oversampling). For example, if your simulation needs 1/60 second steps to run 
stable and the system clock says that 1/15 of a second has past since the last 
frame, then you would simulate 4 frames at 1/60

• You would want to put an upper limit on the number of frames to prevent 
runaway problems where each frame is slower than the last



Integration Methods



Initial Value Problems

• Let’s say we have a function 𝑦 𝑡 that we need to integrate
• It’s derivative 𝑦′ 𝑡 is a function of time and of the current value of 𝑦:

𝑦′ 𝑡 = 𝑓 𝑡, 𝑦

• We have some initial value for 𝑦 at time 𝑡0

𝑦 𝑡0 = 𝑦0

• We have some time step ∆𝑡 that we want to use to advance the simulation 
forward in time:

𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡

• And we want to evaluate 𝑦𝑖 at each time 𝑡𝑖



Forward Euler Integration

• Perhaps the simplest method for integrating is 
the forward (or explicit) Euler method:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

• It evaluates the derivative function 𝑓 at the 
current time 𝑡𝑖 and uses that to advance the 
entire time step forward

• It is easy to implement but can suffer from 
problems with both accuracy and stability



Double Integration

• For Newtonian simulations, we are computing forces and 
using f=ma to compute accelerations:

𝐚𝑖 = 𝐌−1𝐟 𝑡𝑖 , 𝑦𝑖

• Where M is a diagonal matrix of masses and f() is a function 
that evaluates the current forces in the system

• We then need to integrate twice to get the final position:

𝐯𝑖+1 = 𝐯𝑖 + 𝐚𝑖∆𝑡
𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡



Midpoint Method

• The explicit midpoint method first steps halfway using the forward Euler method:

𝑦
𝑖+
1
2
= 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖

∆𝑡

2

• It then evaluates the derivative at this time, halfway through the full step
• Finally, it re-integrates from the start using the midway derivative

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡
𝑖+
1
2
, 𝑦

𝑖+
1
2
∆𝑡

• The idea is that it should improve over the basic Euler method which only looks at 
the derivative at the beginning of the time step. In the midpoint method, it 
estimates the derivative in the middle of the time step and uses that instead.

• It requires two force evaluations per time step, whereas the basic Euler method 
requires only one



Heun’s Method

• Huen’s method is similar to the midpoint method and 
is also referred to as the explicit trapezoid method

• It starts with a full forward Euler step, and then 
evaluates the accelerations at the end of the time step

• It then re-integrates using the average of the initial and 
final accelerations

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

𝑦𝑖+1 = 𝑦𝑖 +
1

2
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1 ∆𝑡



Runge-Kutta Methods

• Runge-Kutta methods are a family of integrators 
that combine multiple derivative estimates within 
the time step

• They can be constructed according to a set of 
basic patterns, and they generalize a number of 
other integration schemes

• A popular method is the fourth-order classical 
Runge-Kutta method also known as RK4

• RK4 computes accelerations at 4 different points 
and combines them into a final acceleration



RK4

• A widely used Runge-Kutta method is the classic fourth order RK4 method
• This involves computing 4 different derivatives within the time step and combining 

them to get a final result

𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

𝑘2 = 𝑓 𝑡
𝑖+
1
2
, 𝑦𝑖 +

𝑘1
2

∆𝑡

𝑘3 = 𝑓 𝑡
𝑖+
1
2
, 𝑦𝑖 +

𝑘2
2

∆𝑡

𝑘4 = 𝑓 𝑡𝑖+1, 𝑦𝑖 + 𝑘3 ∆𝑡

𝑦𝑖+1 = 𝑦𝑖 +
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4



Verlet Integration

• Verlet integration is a technique used specifically for integrating Newton’s equations of 
motion

• It is often used in simulations with many particles, such as galaxies and molecular simulations

𝑥 𝑡𝑖+1 = 𝑥 𝑡𝑖 + 𝑣 𝑡𝑖 ∆𝑡 +
1

2
𝑎 𝑡𝑖 ∆𝑡

2

𝑣 𝑡𝑖+1 = 𝑣 𝑡𝑖 +
𝑎 𝑡𝑖 + 𝑎 𝑡𝑖+1

2
∆𝑡

• The method is not well suited to situations where the acceleration is dependent on the 
velocity (as with dampers), and so has limited application (but can still be used on galaxies & 
molecules as they don’t involve damping)

• It is also very similar to a method called Leapfrog integration that evaluates the position at 
each time step, but evaluates the velocity at the halfway point between time steps

• There are also higher order (more accurate) extensions known as Yoshida integrators



Explicit Methods

• All of the methods we have looked at so far are 
classified as explicit methods

• Explicit methods calculate the state at a later 
time by using information from the current time

• With these methods, we can calculate the 
derivatives directly (explicitly)

• Even the Runge-Kutta method which involves 
computing several derivatives at different times is 
an explicit method, because we are always 
evaluating the derivatives explicitly and 
extrapolating forward from there



Implicit Methods

• In contrast to explicit methods, implicit methods 
require solving a (often non-linear) equation involving 
both the current and future states

• Implicit methods require additional computation over 
explicit methods and they are typically a lot harder to 
implement

• Their strength, however, is that they can typically 
handle much stiffer equations than explicit methods 
and thus can use much larger time steps

• They may take a lot longer per time step, but they can 
require much fewer time steps, resulting in a net gain 
in certain circumstances



Backward Euler Integration

• Recall the forward (or explicit) Euler method:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

• At first glance, the backward (or implicit) Euler method looks similar to the forward 
Euler method:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1 ∆𝑡

• It involves using a single value of the derivative to advance the entire time step
• However, it requires knowing (solving) the derivative at the end of the time step
• In other words, we must find a new value of 𝑦𝑖+1 such that the derivative at that 

time points backwards to the current value of 𝑦𝑖
• This isn’t so bad for single scalar equations the way we wrote it above, but for 

large systems, we need all of the derivatives in the entire configuration at time 
𝑡𝑖+1 to point back to the configuration at time 𝑡𝑖

• This involves solving a (potentially) large system of (probably) nonlinear equations



Backward Euler Method

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1 ∆𝑡

• The backward Euler method is an example of an implicit integration 
method

• Unlike explicit methods which simply evaluate derivatives at the 
current state and use that to advance forward, implicit methods 
solve the future state

• This usually involves iterative techniques such as Newton’s method
• As mentioned, these methods are more complex, but they can be 

very effective in dealing with stiff situations that are difficult to 
handle with other methods

• We will come back to these in a later lecture



Linear Multistep Methods

• Linear multistep methods are a category of integration techniques 
that keep track of previous derivatives in order to achieve better 
accuracy with little additional cost

• They generally involve computing one new derivative per time step, 
but they can use the previous derivatives to fit a smooth curve 
through the points instead of a straight line approximation

• As they essentially fit a curve through several points, these 
methods require the function to be smooth and so they don’t work 
well in situations with discontinuities (such as collisions)

• These methods were largely developed by British mathematician 
John Couch Adams in the 19th century (he’s also known for 
predicting the existence and position of Neptune)



Two-Step Adams-Bashforth

• A simple multistep method is the two-step Adams-Bashforth method:

𝑦𝑖+2 = 𝑦𝑖+1 +
3

2
𝑓 𝑡𝑖+1, 𝑦𝑖+1 −

1

2
𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

• It requires keeping track of the previous value of 𝑓 𝑡𝑖 , 𝑦𝑖 so there is some 
additional complexity involved with using it

• For example, as 𝑦0 is given as the initial value, we can’t use this method to 
compute 𝑦1 so we have to start off with one step of something else (such 
as forward Euler) and use this method for 𝑦2, and so on

• This can also be an issue when dealing with sharp discontinuities in the 
simulation that might result from things like collisions or fractures



Higher Order Adams-Bashforth

• The Adams-Bashforth methods are a whole family of integration techniques that 
extend this further

• Like the two-step method, they require storing previous derivatives, but they have 
the advantage of only requiring one new derivative evaluation per time step

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

𝑦𝑖+2 = 𝑦𝑖+1 +
3

2
𝑓 𝑡𝑖+1, 𝑦𝑖+1 −

1

2
𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

𝑦𝑖+3 = 𝑦𝑖+2 +
23

12
𝑓 𝑡𝑖+2, 𝑦𝑖+2 −

16

12
𝑓 𝑡𝑖+1, 𝑦𝑖+1 +

5

12
𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡

𝑦𝑖+4 = 𝑦𝑖+3 +
55

24
𝑓 𝑡𝑖+3, 𝑦𝑖+3 −

59

24
𝑓 𝑡𝑖+2, 𝑦𝑖+2 +

37

24
𝑓 𝑡𝑖+1, 𝑦𝑖+1 −

9

24
𝑓 𝑡𝑖 , 𝑦𝑖 ∆𝑡



Adams-Moulton

• The Adams-Bashforth methods are examples 
of explicit methods, as they evaluate 
derivatives based on known configurations

• The Adams-Moulton methods are multipoint 
methods like Adams-Bashforth, but they solve 
the new derivatives implicitly



General Linear Methods

• Around 1965, John Butcher developed a generalization 
of integration techniques

• He came up with a technique for representing all of the 
integration methods we’ve discussed so far in to a 
single category called general linear methods

• GLMs are a superset that includes Runge-Kutta
methods, multipoint (Adams) methods, as well as 
other explicit and implicit methods

• This provides a consistent framework for analyzing and 
comparing different techniques

• It also provides a process for developing new methods



Discontinuities

• When performing numerical integration, we prefer to work with 
nice smooth functions that allow us to compute accurate results.

• With smooth functions, we can compute derivatives locally and be 
reasonably sure that they describe the local shape of the function.

• However, some simulations include discontinuities that break the 
assumption of smoothness.

• A common example in an impact collision that may cause a sudden 
change in velocity

• Discontinuities can be problems for any method that requires 
combining multiple derivatives (such as Adams and Runge-Kutta
methods)

• One approach is to use these high quality methods when possible, 
but switch to a more basic method (such as forward Euler) when 
discontinuities occur. This can be done on a per-frame, per-DOF 
basis, and so it will lead to more complicated implementations



Adaptive Time Steps



Adaptive Time Steps

• So far, we’ve assumed that the time step is just 
set to some constant value, selected as to 
balance accuracy with computation time.

• This works fine for a lot of situations, as long as 
the time step is small enough to produce stable, 
accurate (enough) results.

• However, there is no strict requirement that the 
time step be constant, and we can often gain an 
advantage by adapting the time step 
automatically as the simulation runs.



Adaptive Time Steps

• There are some general guidelines for developing adaptive time 
stepping schemes, but often they are coupled to specific 
integrators. For example, there are adaptive versions of Runge-
Kutta methods

• Adaptive time step methods typically require some way to estimate 
the error to make the determination of whether or not to change 
the time step

• Error estimation is often based on the Taylor series expansion of 
the integration scheme

• Forward Euler, for example, uses a straight line approximation to 
the function, which is a first order approximation (essentially, a 
Taylor series where the higher order terms get truncated)

• The error in this case is going to be on the order of ∆𝑡2

• We can use this to derive a estimation of the error at any given 
point in the simulation



Adaptive Time Steps

• Typical adaptive schemes keep track of the time step size from frame to frame
• They also have a threshold value limiting the maximum local truncation error

• First, the simulation is advanced using the current time step value
• Then, the error is calculated
• If the error is significantly above the threshold (like 2x or more), then the step is 

thrown away, the step size is cut in half, and then the frame is recomputed with 
the new time step

• If the error is slightly above the threshold (like 1x-2x), then the frame is kept, but 
the time step is cut in half for the next frame

• If the error is well below the threshold (like <1/2), then the time step is doubled 
for the next frame

• Otherwise, the time step stays the same for the next frame
• This continues on for each frame of the simulation, adapting the time step as 

necessary
• Of course, you will probably want some upper/lower bounds on this to prevent the 

time step from getting too big or too small



Simulation Architecture



Architecture Goals

• We’ve seen that there are a lot of different approaches to 
integration, and that it’s not always clear which method is best in a 
particular situation.

• Therefore, it would be nice if a simulation library offered the ability 
to choose between different integration techniques.

• We also want to simulate different things such as solids, fluids, rigid 
bodies, that each have their own equations of motions.

• Therefore, we need to think about ways that we can architect the 
software to allow us to combine integration techniques with 
different equations of motion.

• We should also consider that elaborate physics simulations can be 
very costly in terms of computation time, so we should also take 
performance into consideration when discussing architecture.



Integrators & Physical Systems

• It is common in various physics engines to separate out an 
integrator class that can implement different schemes

• If done properly, a single integrator class can be shared by particle, 
soft body, rigid body, and fluid simulations, as well as simulations 
that combine multiple types

• To integrate a physical system in this way, we must group all of its 
degrees of freedom into vectors that can be manipulated by the 
integrator

• If a system has N degrees of freedom, then it needs to provide an N
dimensional position and velocity vector to the integrator

• It will also need functions for setting those values from a vector
• In addition, it will need a function that computes all accelerations in 

the system, based on the current position & velocity values



Physics System Class

// Base system
class PhysicsSystem {
public:

virtual int GetNumDofs();
virtual void GetPositions(std::vector<float> &pos);
virtual void GetVelocities(std::vector<float> &vel);

virtual void SetPositions(const std::vector<float> &pos);
virtual void SetVelocities(const std::vector<float> &vel);

virtual void ComputeAccelerations(std::vector<float> &acc);
};

// Derived systems
class MassSpringSystem : public PhysicsSystem{…};
class RigidBodySystem : public PhysicsSystem {…};



Integrator Class

// Base integrator

class Integrator {

public:

virtual void Integrate(PhysicsSystem &system, float timestep);

};

// Derived integrators

class ForwardEulerIntegrator : public Integrator {…};

class RungeKuttaIntegrator : public Integrator {…};

class MidpointIntegrator : public Integrator {…};



Forward Euler Example

Void ForwardEulerIntegrator::Integrate(PhysicsSystem &system, float timestep) {
// Get positions & velocities
int numDofs = system.GetNumDofs();
std::vector<float> pos(numDofs) , vel(numDofs);
system.GetPositions(pos);
system.GetVelocities(vel);

// Compute accelerations
std::vector<float> acc(numDofs);
system.ComputeAccelerations(acc);

// Forward Euler step
for(int i=0; i<numDofs; i++) {

vel[i] += acc[i] * timestep;
pos[i] += vel[i] * timestep;

}

// Store results
system.SetPositions(pos);
system.SetVelocities(vel);

}



Integrator Notes

• Separating out the integrator from the physics system 
is pretty common practice in general purpose physics 
engines

• It’s a nice way to do things, but can become quite 
complicated in some cases:
– Discontinuities (arising from collisions, etc.)
– Changing number of DOFs (as in fracture simulations, etc.)
– Coupled simulations involving different dynamics. For 

example, if you combine rigid bodies and fluid dynamics, 
you might want to use different integrators tuned to each 
case

– Implicit integrators can benefit from tighter coupling with 
the physics equations to optimize the solver



Resources

• “Numerical Methods for Ordinary Differential 
Equations – Third Edition”, by John Butcher, 2016

• This is a very serious book by one of the leading 
experts in the field

• Wikipedia has a lot of good pages on integrators. 
The page on ‘Euler method’ is a good place to 
start and has a good overview of integration, step 
sizes, approximation error, stability, and accuracy 
issues


