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CSE291: Physics Simulation

• Focus will be on physics of motion (dynamics)

• Main subjects:
– Solid mechanics (deformable bodies & fracture)

– Fluid dynamics

– Rigid body dynamics

• Additional topics:
– Vehicle dynamics

– Galactic dynamics

– Molecular modeling



Programming Project

• There will a single programming project over the quarter
• You can choose one of the following options

– Fracture modeling
– Particle based fluids
– Rigid body dynamics

• Or you can suggest your own idea, but talk to me first
• The project will involve implementing the physics, some level of 

collision detection and optimization, some level of visualization, and 
some level of user interaction

• You can work on your own or in a group of two
• You also have to do a presentation for the final and demo it live or 

show some rendered video
• I will provide more details on the web page



Grading

• There will be two pop quizzes, each worth 5% of 
the total grade

• For the project, you will have to demonstrate 
your current progress at two different times in 
the quarter (roughly 1/3 and 2/3 through). These 
will each be worth 10% of the total grade

• The final presentation is worth 10%

• The remaining 60% is for the content of the 
project itself



Course Outline

1. Newtonian Particles
2. Integration
3. Elasticity
4. Finite Elements
5. Mesh Generation
6. Contact Modeling
7. Fracture
8. Vector Calculus
9. Fluid Dynamics

10.Poisson Equations
11.Particle-Based Fluids
12.Advanced Fluids
13.Rigid Body Motion
14.Articulated Bodies
15.Rigid Body Collisions
16.Vehicle Dynamics
17.Galactic Dynamics
18.Molecular Modeling



Recommended Reading

• “Nonlinear Finite Elements for 
Continua and Structures”, 
Second Edition

• Belytschko, Liu, Moran, 
Elkhodary, 2014

• In addition, I will post several 
papers on the web page



Physics Resources

• “Numerical Recipes: The Art of Scientific Computing, 3rd

Edition” is also a great book that covers a wide range of 
useful numerical techniques (Press, Teukolsky, Vetterling, 
Flannery, 2007)

• www.PhysicsBasedAnimation.com is a great web page with 
links to tons of papers on advanced physics simulation

• “An Introduction to Physics-based Animation” was a course 
at SIGGRAPH 2018 presented by Adam Bargteil and Tamar 
Shinar

http://www.cs.ucr.edu/~shinar/papers/2018_introduction_to_pba.pdf

http://www.physicsbasedanimation.com/
http://www.cs.ucr.edu/~shinar/papers/2018_introduction_to_pba.pdf


Simulation & Models



Simulation

• A simulation is an imitation of a process based on a 
model (or model equations) and using approximation

• The model represents the system being simulated

• The simulation represents the behavior of the system 
over time

• Simulation can be applied to natural systems such as 
chemistry, biology, and physics, or human systems such 
as economics, social science, transportation

• Powerful tool in research, engineering, education, 
training, entertainment…



Models

• The model is a set of equations that describes the behavior of the 
system over time

• Models of physical systems always involve some level of 
approximation (for example, we can model a ball bouncing without 
having to model the quantum mechanics of every single subatomic 
particle in the ball)

• Models can be discreet or continuous in time
• In a continuous simulation, the model equations are typically 

differential equations that are based on physics
• One can also perform discrete simulations (such as a logic 

simulation of a computer chip) that are based on logical equations 
rather than differential equations

• We will focus mainly on time continuous simulations in this class



Model Validation

• Often times, simulations are used to predict 
the behavior of some real world process

• In this case, the simulation is only useful if can 
match the real world to some degree of 
accuracy

• Simulation models can be directly compared 
to real world measurements to verify the 
validity of the model and determine the range 
of parameters where the simulation is useful



Model Calibration

• Often, models can be calibrated to match real world results
• If a particular model has adjustable constants, then one can 

use calibration algorithms that can set these constants such 
as to optimize a models ability to reproduce a set of real 
world results

• For example, if we have a simulation of a cannon ball and 
we want to predict how far it will fly, we have some 
constants that we don’t want to mess with (such as gravity, 
or the radius of the cannon ball) but we might have other 
constants that are a little more flexible (such as the drag 
coefficient of the ball)

• We will come back to this in a later lecture



Degrees of Freedom

• The parameters that describe the state of the 
simulation are called the degrees of freedom (DOFs) of 
the system

• The number of DOFs is often constant, but does not 
have to be. For example, a simulation of fracture may 
result in more DOFs at the end of the simulation than 
at the beginning

• Simulations that use adaptive level of detail will add or 
remove DOFs as the simulation proceeds

• In our physics simulations, the DOFs will mainly be 
position and velocity values (including angles and 
angular velocities)



Initial Conditions

• Time-continuous simulations start at some time t0 and 
advance forward to some final time tfinal

• We will need to specify the initial conditions, which 
requires values for all of the DOFs at time t0

• For some simulations, specifying the model and the 
initial conditions is enough to determine the entire 
simulation

• For other simulations (such as interactive, or human-in-
the-loop), there will also be a continuous stream of 
input data that is generated throughout the simulation



Visualization

• There is a lot to be said about visualization of physics 
simulations, but the details are outside of the scope of 
this class

• We can at least assume that we will want to draw the 
objects we are simulating in some sort of animation

• In addition to the object geometry, we can also 
visualize forces, velocities, pressures, temperature, 
stresses, and any other properties we are interested in

• We will assume the use of OpenGL or some similar 
graphics API for this class, and stick to fairly simple 
visualization



Physical Domains



Physical Domains

• Depending on what we’re simulating, we may 
operate in different physical domains

Slow to fast Very fast

Small to very large 
size

Classical Relativistic

Very small Quantum 
Mechanical

Quantum Field 
Theory



Classical Domain

• The classical domain refers to the physics of everyday 
objects from things as small as a molecule to as large 
as a cluster of galaxies

• We can divide the classical domain further into:
– Mechanics

– Electromagnetics

– Statistical Mechanics

– Thermodynamics

– And more…

• In this course, we will mostly be interested in classical 
mechanics, but we will touch on some other areas



Quantum Domain

• If we want to model very small things down at the level 
of electrons, we need to work in the domain of quantum 
mechanics

• Quantum mechanical simulations are typically based on 
the Schrödinger Equation, in either the time-dependent 
or time-independent form

• With these models, we can predict shapes of molecules 
as well as their chemical properties based on first 
principles of quantum mechanics

• We will briefly discuss these in a later lecture on 
molecular simulation



Relativistic Domain

• If we are dealing with very fast moving objects 
near the speed of light, we operate in the 
domain of relativistic mechanics

• We can model systems based on both special 
relativity or general relativity

• For example, simulations of black hole 
merging are done using space-time general 
relativistic models



Quantum Field Theory Domain

• If we need both high relativistic speeds and 
small quantum scales, we can work in the 
domain of quantum field theory

• This is used for simulations of subatomic 
particle interactions and modeling of the 
Standard Model of elementary particles and 
the fundamental forces of nature

• Unfortunately, we won’t be covering this…



Classical Mechanics



Statics vs. Dynamics

• The field of classical mechanics includes both statics and dynamics
• Statics refers to the analysis of stable configurations for things such 

as structures (buildings, bridges…). This can also apply to steady-
state motion such as an aircraft cruising at a constant speed.

• Dynamics refers to the study of change. This often refers to physical 
movement, but can also refer to changes in other properties such 
as temperature as in thermodynamics.

• Within dynamics we sometimes refer to modal dynamics as the 
study of repeating oscillations in the frequency domain vs. transient 
dynamics as the study of non-repeating processes in the time 
domain.

• In this course, we will mainly be interested in transient dynamics, 
but will occasionally discuss statics and modal dynamics.



Kinematics

• The subject of mechanics also includes 
kinematics which is the geometric description 
of motion, independent of the physical forces 
involved

• Kinematics describes motion in terms of 
positions, velocities, and accelerations, but 
makes no reference to the causes of the 
motions (i.e., forces, masses, momentum…)



Newtonian Dynamics

• Within the realm of classical mechanics, there are several ways to 
formulate equations of motion

• Newtonian formulations are based around the use of Newton’s Second 
Law: f=ma

• One typically starts by computing all of the forces, acting on all of the 
degrees of freedom in a system, usually in a single global frame of 
reference

• These physical forces can then be related to kinematic accelerations using 
f=ma

• The accelerations can then be integrated to produce velocities and 
positions

• The Newtonian formulation of dynamics is particularly well suited to 
geometrically complex transient dynamic problems, such as the ones we 
are interested in

• Most of the systems we discuss in this course will be based on this type of 
formulation



Lagrangian Dynamics

• In 1788, Joseph-Louis Lagrange reformulated classical mechanics into a 
system now known as Lagrangian mechanics

• Lagrangian mechanics applies to systems with constraints
• Typically these constraints are described geometrically, for example, one 

might describe the motion of a door that is constrained by a hinge
• The Newtonian formulation would think of a door as a 6 degree-of-

freedom (DOF) rigid body that is constrained in 5 of its DOFs. This leads to 
5 unknown constraint forces that need to be solved, which can be costly

• The Lagrangian formulation defines a set of generalized DOFs that express 
only the unconstrained motion. In the case of a door, it would require only 
1 DOF

• In highly constrained situations, Lagrangian formulations often reduce to 
simpler sets of equations than Newtonian ones, and can be more efficient 
to compute

• We will look at these in more detail when we discuss articulated rigid 
bodies in a later lecture



Hamiltonian Dynamics

• In 1833, William Rowan Hamilton reformulated 
classical mechanics once again, starting with 
Lagrangian mechanics

• It is similar to Lagrangian dynamics in that it uses 
generalized coordinates and formulates the 
equations in terms of energy

• It is more abstract than the Newtonian approach 
but can be useful for understanding the behavior 
of complex systems with many degrees of 
freedom

• We will briefly cover this method in a later lecture



Newtonian Particles



Kinematics of Particles

• We will define an individual particle’s 3D 
position over time as r(t), or just r

• By definition, velocity is the first derivative of 
position:

𝐯 𝑡 =
𝑑𝐫

𝑑𝑡

• And acceleration is the second derivative:

𝐚 𝑡 =
𝑑𝐯

𝑑𝑡
=

𝑑2𝐫

𝑑𝑡2



Uniform Acceleration

• How does a particle move when undergoing a 
constant acceleration?

𝐚 𝑡 = 𝐚0

𝐯 𝑡 = 𝐚𝑑𝑡 = 𝐯0 + 𝐚0𝑡

𝐫 𝑡 = 𝐯𝑑𝑡 = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2



Uniform Acceleration

𝐫 𝑡 = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2

• This shows us that a particle undergoing a constant 
acceleration will follow a parabola

• Keep in mind that this is a 3D vector equation and 
there is potentially a parabola equation in each 
dimension. Together, they will form a 2D parabola 
oriented in 3D space

• We also see that we need two additional vectors 𝐫0
and 𝐯0 in order to fully specify the equation. These 
represent the initial position and velocity at time t=0



Newton’s First Law

• Newton’s First Law states that a body in motion 
will remain in motion and a body at rest will 
remain at rest- unless acted upon by some force

• This implies that a free particle moving out in 
space will just travel in a straight line:

𝐚 = 0

𝐯 = 𝐯0
𝐫 = 𝐫0 + 𝐯0𝑡



Mass and Momentum

• We can associate a mass m with each particle. 
We will assume that the mass is constant:

𝑚 = 𝑚0

• We will also define a vector quantity called 
momentum p, which is the product of scalar mass 
and vector velocity

𝐩 = 𝑚𝐯



Force

• Force is defined as the rate of change of momentum

𝐟 =
𝑑𝐩

𝑑𝑡
• If we assume that mass m is constant, we can expand 

this to:

𝐟 =
𝑑𝐩

𝑑𝑡
=
𝑑 𝑚𝐯

𝑑𝑡
= 𝑚

𝑑𝐯

𝑑𝑡
= 𝑚𝐚

𝐟 = 𝑚𝐚



Newton’s Second Law

• Newton’s Second Law says:

𝐟 =
𝑑𝐩

𝑑𝑡
= 𝑚𝐚

• This relates the kinematic quantity of 
acceleration a to the physical quantity of  
force f



Newton’s Third Law

• Newton’s Third Law says that any force that body A 
applies to body B will be met by an equal and opposite 
force from B to A

𝐟𝐴𝐵 = −𝐟𝐵𝐴

• Put another way: every action has an equal and 
opposite reaction

• This is very important when combined with the Second 
Law, as the two together imply the Law of 
Conservation of Momentum



Conservation of Momentum

• Remember that a force is a rate of change of 
momentum

• If Newton’s Third Law says that the forces in a 
system cancel out, then the total change of 
momentum of the system must be 0

• Therefore, the total momentum in a system 
must remain constant

• This is the Law of Conservation of Momentum



Forces on a Particle

• A particle may be subjected to several 
simultaneous vector forces from different 
sources

• All of these forces simply add up to a single 
total force acting on the particle:

𝐟𝑡𝑜𝑡𝑎𝑙 =𝐟𝑖



Newtonian Mechanics

• Newton’s Second Law relates the property of force to the kinematic 
property of acceleration through a measureable constant mass:

𝐟 = 𝑚𝐚
• Forces are a very useful property to work with because of Newton’s 

Third Law:
𝐟𝐴𝐵 = −𝐟𝐵𝐴

• And because they add up in a very simple way:

𝐟𝑡𝑜𝑡𝑎𝑙 =𝐟𝑖

• These principles form the foundation of all Newtonian based 
simulations, including solid dynamics, rigid body dynamics, and fluid 
dynamics



Differential Equations

• The forces in a system are generally based on the 
current configuration of the system

• Mathematically, this says that the second derivative 
(acceleration) of a value is dependent on the value 
itself (and possibly it’s first derivative as well)

• This implies that the equations of motion will be 
differential equations (as the equations contain 
differentials…)

• In particular, they will be second order ordinary 
differential equations

• Ultimately, we wish to integrate these to compute 
positions over some time range



Integration

• Newton’s Second Law (f=ma) relates the physical forces 
in a system to the kinematic accelerations

• Given initial conditions (initial positions and velocities), 
we can integrate the accelerations to compute the 
velocities and positions over time

• In practice, we won’t be able to compute an exact 
integral because the system is too complicated and 
produces equations that might not have exact integrals

• We therefore have to resort to a numerical integration 
technique, where we rely on some degree of 
approximation



Numerical Integration

• There are many techniques to numerically 
integrate systems of ordinary differential 
equations

• They differ in computational cost, accuracy, 
stability, and flexibility

• We will spend the next lecture examining 
them in more detail

• For today, we will stick to the simplest 
method, known as the forward Euler method



Forward Euler Integration

• The forward Euler method uses the derivative at the start of the 
time step to advance the simulation forward

• For example, to compute the new velocity at time step i+1, we use 
the acceleration computed at time step i and assume it holds 
constant for the duration of ∆𝑡

𝐯𝑖+1 = 𝐯𝑖 + 𝐚𝑖∆𝑡

• For the position integration, we do essentially the same thing, 
except we use the new velocity instead of the previous velocity

𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡

• We will discuss this further in the next lecture…



Newtonian Simulation

• Newtonian simulations generally follow a pattern like this:

- Set up initial conditions
- while (not finished) {

- Compute all forces in the system, which can then be used to compute the 
accelerations through f=ma
- Integrate the accelerations one small step forward in time to compute new velocities 
and positions

}

• Sure, the details will get more complicated, but in general, we are 
taking finite steps forward in time and evaluating forces at each 
step



Particle Example

class Particle {
public:

void ApplyForce(vec3 &f) {Force+=f;}
void Integrate(float deltaTime) {

vec3 accel=(1/Mass) * Force;
Velocity += accel*deltaTime;
Position += Velocity*deltaTime;
Force=vec3(0);

}
private:

vec3 Position;
vec3 Velocity;
vec3 Force;
float Mass;

};



Energy

• The kinetic energy of a particle is 
1

2
𝑚 𝐯 2

• There are also various forms of potential energy such 
(gravity, springs, etc. can store energy as a potential)

• Energy in a system may convert between different 
forms (kinetic, potential, thermal, electromagnetic…) 
but the total energy in a system remains constant

• The subject of energy is important in physics, but 
Newtonian formulations of the equations rarely make 
direct use of it

• We will therefore not discuss it much today, but it will 
come back from time to time in later lectures



Basic Forces



Uniform Gravity

• A very simple, useful force is the uniform gravity field:

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝐠0

𝐠0 = 0 −9.8 0
𝑚

𝑠2

• It assumes that we are near the surface of the Earth and we can approximate the 
gravity as constant in both magnitude and direction

• 9.8 m/s2 is a reasonable approximation, as it actually ranges from roughly 9.76 to 
9.83 around the world due to variations in altitude and local density

• By definition, standard gravity is 9.80665 m/s2, which is a number agreed upon in 
1901 and is used in various standards of weight and mass, and would make a good 
choice as a default gravity value for simulations

• There also exist detailed maps of Earth’s gravity that account for variation in 
direction and magnitude of the local gravity vector at the surface



Inverse-Square Gravity

• If we are modeling orbital mechanics, planetary systems, or galaxies, we need to 
consider the full inverse-square law of gravity acting between two bodies

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• Where G is the universal gravitational constant (2014 version):

𝐺 = 6.67408 × 10−11
𝑚3

𝑘𝑔 ∙ 𝑠2

• d is the distance between the two bodies: 𝑑 = 𝐫1 − 𝐫2

• And e is a unit length vector pointing in the direction of gravitational attraction 
(i.e., towards the other body)



Inverse-Square Gravity

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• We need to consider the gravitational force acting on every pair of bodies
• In a system of n bodies, this means we need to compute a gravitational 

force Τ𝑛 𝑛 − 1 2 times
• In terms of algorithm performance, this implies O(n2) performance, which 

is potentially slow for large values of n
• It turns out that for galactic simulations with millions of particles, we can 

actually achieve O(n log n) performance using some octree techniques
• For big-bang simulations in periodic domains with billions of particles, we 

can even achieve O(n) performance using some Fourier techniques
• We will discuss these techniques in more detail in a later lecture



Aerodynamic Drag

• Aerodynamic interactions are very complex and difficult to model accurately

• For particles, we can use a reasonable simplification to describe the total aerodynamic drag 
force on an object:

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Where 𝜌 is the density of the surrounding fluid (air, water, etc.), 𝑐𝑑 is the coefficient of drag 
for the object, a is the cross sectional area of the object, and e is a unit vector in the opposite 
direction of the velocity:

𝐞 = −
𝐯

𝐯

• Also, keep in mind that we really want the relative velocity, which is the different between 
the particle velocity and the average velocity of the surrounding fluid

𝐯 = 𝐯𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝐯𝑓𝑙𝑢𝑖𝑑



Fluid Density: 𝜌

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The fluid density 𝜌 of air at 15o C and a pressure of 
101.325 kPa (14.696 psi) is 1.225 kg/m3 and is used as 
a common default value

• For aircraft simulations, one could use more advanced 
density models that vary with altitude, temperature, 
and humidity

• The fluid density 𝜌 of liquid water is 999.8 kg/m3 at 0o 

C  and 997.0 kg/m3 at 25o C at sea level



Drag Coefficient: 𝑐𝑑

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The aerodynamic drag force uses a unit-less constant 𝑐𝑑 called the drag 
coefficient

• This number effectively quantifies the aerodynamic drag of the particular 
shape, and typically ranges from around 0.01 (very streamlined) to 1.5 
(bluff body)

• A sphere has a 𝑐𝑑 around 0.47 and a cube has a 𝑐𝑑 around 1.05
• The Tesla Model 3 has a 𝑐𝑑 of 0.23 and a Jeep Wrangler has a 𝑐𝑑 of 0.58
• A person on a bicycle has a 𝑐𝑑 around 1.0 and a person running has a 

𝑐𝑑 around 1.2
• A Formula-1 race car actually has a 𝑐𝑑 near 1.4! This is because the 

aerodynamics of the car body are designed to generate downforce to keep 
the car on the ground in tight turns. This downforce has to increase drag 
due to conservation of momentum



Cross Sectional Area: 𝑎

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• In the aerodynamic drag equation above, a refers to 
the cross sectional area of the object moving through 
the surrounding fluid

• This means the area when viewed from the direction of 
motion

• For a spherical object of radius r, it would be 𝜋𝑟2

• For a car driving forward, this would be the area of the 
front of the car viewed with an orthographic projection



Aerodynamic Drag

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Most of the values here are constants (𝜌, 𝑐𝑑, 𝑎), and e
is just used to specify the direction the force acts

• Therefore, when we really boil this down, we see that 
the aerodynamic drag force is proportional to velocity 
squared

𝑓𝑑𝑟𝑎𝑔 ∝ 𝑣2



Springs

• We can use Hooke’s Law to model simple linear spring 
forces:

𝐟𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑠𝐱

• Where 𝑘𝑠 is the spring constant describing the stiffness of 
the spring and x is a vector describing the displacement

• The spring force is therefore going to work against the 
displacement

• The direction of the force will be along the axis of the 
spring and will pull if the spring is extended and push if the 
spring is compressed



Springs

• In practice, it’s nice to define a spring as connecting 
two particles and having a rest length 𝑙0 where the 
spring force is 0

• This gives us:

𝑥 = 𝐫1 − 𝐫2 − 𝑙0

𝐞 =
𝐫1−𝐫2

𝐫1−𝐫2

𝐱 = 𝑥𝐞

𝑙0

𝑙0𝑥

𝐫1 𝐫2

𝐫1 𝐫2

𝐱



Springs

• A spring applies equal and opposite forces to two 
particles, and therefore explicitly obeys Newton’s 
Third Law

• They should also obey the Laws of Conservation 
of Momentum and Conservation of Energy

• In practice however, how well they obey these 
laws is due to the numerical integration scheme 
used

• We will discuss this in more detail in the next 
lecture



Dampers

• We can apply damping forces between particles:

𝐟𝑑𝑎𝑚𝑝 = −𝑘𝑑𝑣𝑐𝑙𝑜𝑠𝑒𝐞

• 𝑘𝑑 is the damping constant, 𝑣𝑐𝑙𝑜𝑠𝑒 is the closing velocity, and 𝐞 is a unit 
vector that provides the direction (𝐞 works the same as with springs)

• Dampers will oppose any difference in velocity between particles
• The damping forces are equal and opposite, so they should conserve 

momentum, but they will remove energy from the system by design
• In real dampers, kinetic energy of motion is converted into complex fluid 

motion within the damper and then diffused into random molecular 
motion in the form of heat

• In other words, the kinetic energy of motion is effectively lost, but 
Conservation of Energy is still obeyed because the kinetic energy is 
converted into thermal energy



Closing Velocity

• To calculate the damping force, we need to calculate 
the closing velocity between two particles

• This is the rate that the two particles are 
approaching each other

𝑣𝑐𝑙𝑜𝑠𝑒 = 𝐯2 − 𝐯1 ∙ 𝐞

𝐫2𝐫1

𝐯2

𝐯1
𝐞



Spring-Dampers

• It is common to combine a spring and a damper into 
a single entity called a spring-damper

• A spring-damper connects two particles and has a 
rest length 𝑙0, a spring constant 𝑘𝑠, and a damping 
constant 𝑘𝑑



Spring-Damper Example

class SpringDamper {
public:

void ComputeForces();
private:

Particle *P1,*P2;
float SpringConstant;
float DampingConstant;
float RestLength;

};



Spring-Damper Example

SpringDamper::ComputeForces() {
// Get kinematic particle properties
const vec3 &r1=P1->GetPosition(), &r2=P2->GetPosition();
const vec3 &v1=P1->GetVelocity(), &v2=P2->GetVelocity();

// Compute kinematic properties based on both particles
float dist=distance(r1,r2); // Distance between particles
vec3 e=(r1-r2)/dist; // Unit vector for direction
float x=dist-RestLength; // Displacement
float v=dot((v2-v1),e); // Closing velocity

// Compute spring-damper force
vec3 force=(- SpringConstant*x - DampingConstant*v ) * e;

// Apply force to particles
P1->ApplyForce(force); // Apply force to P1
P2->ApplyForce(-force); // Apply equal and opposite force to P2

}



Combining Forces

• All of the different forces we’ve examined can be 
combined by simply adding them together

• The total force on a particle is just the sum of all 
of the individual forces

• In each step of the simulation, we compute all of 
the forces in the entire system at the particular 
instant

• We then use those forces to integrate the 
accelerations to compute new velocities and 
positions at some finite time step later


