
Newtonian Particles

Steve Rotenberg
CSE291: Physics Simulation

UCSD
Spring 2019

CSE291: Physics Simulation

• Instructor: Steve Rotenberg (srotenberg@ucsd.edu)

• Lecture: EBU3 4140 (TTh 5:00 – 6:20pm)

• Office: EBU3 2210 (TTh 3:50– 4:50pm)

• TA: Mridul Kavidayal (mkaviday@eng.ucsd.edu)

• Web page:

https://cseweb.ucsd.edu/classes/sp19/cse291-d/index.html

mailto:srotenberg@ucsd.edu
mailto:mkaviday@eng.ucsd.edu
https://cseweb.ucsd.edu/classes/sp19/cse291-d/index.html

CSE291: Physics Simulation

• Focus will be on physics of motion (dynamics)

• Main subjects:
– Solid mechanics (deformable bodies & fracture)

– Fluid dynamics

– Rigid body dynamics

• Additional topics:
– Vehicle dynamics

– Galactic dynamics

– Molecular modeling

Programming Project

• There will a single programming project over the quarter
• You can choose one of the following options

– Fracture modeling
– Particle based fluids
– Rigid body dynamics

• Or you can suggest your own idea, but talk to me first
• The project will involve implementing the physics, some level of

collision detection and optimization, some level of visualization, and
some level of user interaction

• You can work on your own or in a group of two
• You also have to do a presentation for the final and demo it live or

show some rendered video
• I will provide more details on the web page

Grading

• There will be two pop quizzes, each worth 5% of
the total grade

• For the project, you will have to demonstrate
your current progress at two different times in
the quarter (roughly 1/3 and 2/3 through). These
will each be worth 10% of the total grade

• The final presentation is worth 10%

• The remaining 60% is for the content of the
project itself

Course Outline

1. Newtonian Particles
2. Integration
3. Elasticity
4. Finite Elements
5. Mesh Generation
6. Contact Modeling
7. Fracture
8. Vector Calculus
9. Fluid Dynamics

10.Poisson Equations
11.Particle-Based Fluids
12.Advanced Fluids
13.Rigid Body Motion
14.Articulated Bodies
15.Rigid Body Collisions
16.Vehicle Dynamics
17.Galactic Dynamics
18.Molecular Modeling

Recommended Reading

• “Nonlinear Finite Elements for
Continua and Structures”,
Second Edition

• Belytschko, Liu, Moran,
Elkhodary, 2014

• In addition, I will post several
papers on the web page

Physics Resources

• “Numerical Recipes: The Art of Scientific Computing, 3rd

Edition” is also a great book that covers a wide range of
useful numerical techniques (Press, Teukolsky, Vetterling,
Flannery, 2007)

• www.PhysicsBasedAnimation.com is a great web page with
links to tons of papers on advanced physics simulation

• “An Introduction to Physics-based Animation” was a course
at SIGGRAPH 2018 presented by Adam Bargteil and Tamar
Shinar

http://www.cs.ucr.edu/~shinar/papers/2018_introduction_to_pba.pdf

http://www.physicsbasedanimation.com/
http://www.cs.ucr.edu/~shinar/papers/2018_introduction_to_pba.pdf

Simulation & Models

Simulation

• A simulation is an imitation of a process based on a
model (or model equations) and using approximation

• The model represents the system being simulated

• The simulation represents the behavior of the system
over time

• Simulation can be applied to natural systems such as
chemistry, biology, and physics, or human systems such
as economics, social science, transportation

• Powerful tool in research, engineering, education,
training, entertainment…

Models

• The model is a set of equations that describes the behavior of the
system over time

• Models of physical systems always involve some level of
approximation (for example, we can model a ball bouncing without
having to model the quantum mechanics of every single subatomic
particle in the ball)

• Models can be discreet or continuous in time
• In a continuous simulation, the model equations are typically

differential equations that are based on physics
• One can also perform discrete simulations (such as a logic

simulation of a computer chip) that are based on logical equations
rather than differential equations

• We will focus mainly on time continuous simulations in this class

Model Validation

• Often times, simulations are used to predict
the behavior of some real world process

• In this case, the simulation is only useful if can
match the real world to some degree of
accuracy

• Simulation models can be directly compared
to real world measurements to verify the
validity of the model and determine the range
of parameters where the simulation is useful

Model Calibration

• Often, models can be calibrated to match real world results
• If a particular model has adjustable constants, then one can

use calibration algorithms that can set these constants such
as to optimize a models ability to reproduce a set of real
world results

• For example, if we have a simulation of a cannon ball and
we want to predict how far it will fly, we have some
constants that we don’t want to mess with (such as gravity,
or the radius of the cannon ball) but we might have other
constants that are a little more flexible (such as the drag
coefficient of the ball)

• We will come back to this in a later lecture

Degrees of Freedom

• The parameters that describe the state of the
simulation are called the degrees of freedom (DOFs) of
the system

• The number of DOFs is often constant, but does not
have to be. For example, a simulation of fracture may
result in more DOFs at the end of the simulation than
at the beginning

• Simulations that use adaptive level of detail will add or
remove DOFs as the simulation proceeds

• In our physics simulations, the DOFs will mainly be
position and velocity values (including angles and
angular velocities)

Initial Conditions

• Time-continuous simulations start at some time t0 and
advance forward to some final time tfinal

• We will need to specify the initial conditions, which
requires values for all of the DOFs at time t0

• For some simulations, specifying the model and the
initial conditions is enough to determine the entire
simulation

• For other simulations (such as interactive, or human-in-
the-loop), there will also be a continuous stream of
input data that is generated throughout the simulation

Visualization

• There is a lot to be said about visualization of physics
simulations, but the details are outside of the scope of
this class

• We can at least assume that we will want to draw the
objects we are simulating in some sort of animation

• In addition to the object geometry, we can also
visualize forces, velocities, pressures, temperature,
stresses, and any other properties we are interested in

• We will assume the use of OpenGL or some similar
graphics API for this class, and stick to fairly simple
visualization

Physical Domains

Physical Domains

• Depending on what we’re simulating, we may
operate in different physical domains

Slow to fast Very fast

Small to very large
size

Classical Relativistic

Very small Quantum
Mechanical

Quantum Field
Theory

Classical Domain

• The classical domain refers to the physics of everyday
objects from things as small as a molecule to as large
as a cluster of galaxies

• We can divide the classical domain further into:
– Mechanics

– Electromagnetics

– Statistical Mechanics

– Thermodynamics

– And more…

• In this course, we will mostly be interested in classical
mechanics, but we will touch on some other areas

Quantum Domain

• If we want to model very small things down at the level
of electrons, we need to work in the domain of quantum
mechanics

• Quantum mechanical simulations are typically based on
the Schrödinger Equation, in either the time-dependent
or time-independent form

• With these models, we can predict shapes of molecules
as well as their chemical properties based on first
principles of quantum mechanics

• We will briefly discuss these in a later lecture on
molecular simulation

Relativistic Domain

• If we are dealing with very fast moving objects
near the speed of light, we operate in the
domain of relativistic mechanics

• We can model systems based on both special
relativity or general relativity

• For example, simulations of black hole
merging are done using space-time general
relativistic models

Quantum Field Theory Domain

• If we need both high relativistic speeds and
small quantum scales, we can work in the
domain of quantum field theory

• This is used for simulations of subatomic
particle interactions and modeling of the
Standard Model of elementary particles and
the fundamental forces of nature

• Unfortunately, we won’t be covering this…

Classical Mechanics

Statics vs. Dynamics

• The field of classical mechanics includes both statics and dynamics
• Statics refers to the analysis of stable configurations for things such

as structures (buildings, bridges…). This can also apply to steady-
state motion such as an aircraft cruising at a constant speed.

• Dynamics refers to the study of change. This often refers to physical
movement, but can also refer to changes in other properties such
as temperature as in thermodynamics.

• Within dynamics we sometimes refer to modal dynamics as the
study of repeating oscillations in the frequency domain vs. transient
dynamics as the study of non-repeating processes in the time
domain.

• In this course, we will mainly be interested in transient dynamics,
but will occasionally discuss statics and modal dynamics.

Kinematics

• The subject of mechanics also includes
kinematics which is the geometric description
of motion, independent of the physical forces
involved

• Kinematics describes motion in terms of
positions, velocities, and accelerations, but
makes no reference to the causes of the
motions (i.e., forces, masses, momentum…)

Newtonian Dynamics

• Within the realm of classical mechanics, there are several ways to
formulate equations of motion

• Newtonian formulations are based around the use of Newton’s Second
Law: f=ma

• One typically starts by computing all of the forces, acting on all of the
degrees of freedom in a system, usually in a single global frame of
reference

• These physical forces can then be related to kinematic accelerations using
f=ma

• The accelerations can then be integrated to produce velocities and
positions

• The Newtonian formulation of dynamics is particularly well suited to
geometrically complex transient dynamic problems, such as the ones we
are interested in

• Most of the systems we discuss in this course will be based on this type of
formulation

Lagrangian Dynamics

• In 1788, Joseph-Louis Lagrange reformulated classical mechanics into a
system now known as Lagrangian mechanics

• Lagrangian mechanics applies to systems with constraints
• Typically these constraints are described geometrically, for example, one

might describe the motion of a door that is constrained by a hinge
• The Newtonian formulation would think of a door as a 6 degree-of-

freedom (DOF) rigid body that is constrained in 5 of its DOFs. This leads to
5 unknown constraint forces that need to be solved, which can be costly

• The Lagrangian formulation defines a set of generalized DOFs that express
only the unconstrained motion. In the case of a door, it would require only
1 DOF

• In highly constrained situations, Lagrangian formulations often reduce to
simpler sets of equations than Newtonian ones, and can be more efficient
to compute

• We will look at these in more detail when we discuss articulated rigid
bodies in a later lecture

Hamiltonian Dynamics

• In 1833, William Rowan Hamilton reformulated
classical mechanics once again, starting with
Lagrangian mechanics

• It is similar to Lagrangian dynamics in that it uses
generalized coordinates and formulates the
equations in terms of energy

• It is more abstract than the Newtonian approach
but can be useful for understanding the behavior
of complex systems with many degrees of
freedom

• We will briefly cover this method in a later lecture

Newtonian Particles

Kinematics of Particles

• We will define an individual particle’s 3D
position over time as r(t), or just r

• By definition, velocity is the first derivative of
position:

𝐯 𝑡 =
𝑑𝐫

𝑑𝑡

• And acceleration is the second derivative:

𝐚 𝑡 =
𝑑𝐯

𝑑𝑡
=

𝑑2𝐫

𝑑𝑡2

Uniform Acceleration

• How does a particle move when undergoing a
constant acceleration?

𝐚 𝑡 = 𝐚0

𝐯 𝑡 = 𝐚𝑑𝑡׬ = 𝐯0 + 𝐚0𝑡

𝐫 𝑡 = 𝐯𝑑𝑡׬ = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2

Uniform Acceleration

𝐫 𝑡 = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2

• This shows us that a particle undergoing a constant
acceleration will follow a parabola

• Keep in mind that this is a 3D vector equation and
there is potentially a parabola equation in each
dimension. Together, they will form a 2D parabola
oriented in 3D space

• We also see that we need two additional vectors 𝐫0
and 𝐯0 in order to fully specify the equation. These
represent the initial position and velocity at time t=0

Newton’s First Law

• Newton’s First Law states that a body in motion
will remain in motion and a body at rest will
remain at rest- unless acted upon by some force

• This implies that a free particle moving out in
space will just travel in a straight line:

𝐚 = 0

𝐯 = 𝐯0
𝐫 = 𝐫0 + 𝐯0𝑡

Mass and Momentum

• We can associate a mass m with each particle.
We will assume that the mass is constant:

𝑚 = 𝑚0

• We will also define a vector quantity called
momentum p, which is the product of scalar mass
and vector velocity

𝐩 = 𝑚𝐯

Force

• Force is defined as the rate of change of momentum

𝐟 =
𝑑𝐩

𝑑𝑡
• If we assume that mass m is constant, we can expand

this to:

𝐟 =
𝑑𝐩

𝑑𝑡
=
𝑑 𝑚𝐯

𝑑𝑡
= 𝑚

𝑑𝐯

𝑑𝑡
= 𝑚𝐚

𝐟 = 𝑚𝐚

Newton’s Second Law

• Newton’s Second Law says:

𝐟 =
𝑑𝐩

𝑑𝑡
= 𝑚𝐚

• This relates the kinematic quantity of
acceleration a to the physical quantity of
force f

Newton’s Third Law

• Newton’s Third Law says that any force that body A
applies to body B will be met by an equal and opposite
force from B to A

𝐟𝐴𝐵 = −𝐟𝐵𝐴

• Put another way: every action has an equal and
opposite reaction

• This is very important when combined with the Second
Law, as the two together imply the Law of
Conservation of Momentum

Conservation of Momentum

• Remember that a force is a rate of change of
momentum

• If Newton’s Third Law says that the forces in a
system cancel out, then the total change of
momentum of the system must be 0

• Therefore, the total momentum in a system
must remain constant

• This is the Law of Conservation of Momentum

Forces on a Particle

• A particle may be subjected to several
simultaneous vector forces from different
sources

• All of these forces simply add up to a single
total force acting on the particle:

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

Newtonian Mechanics

• Newton’s Second Law relates the property of force to the kinematic
property of acceleration through a measureable constant mass:

𝐟 = 𝑚𝐚
• Forces are a very useful property to work with because of Newton’s

Third Law:
𝐟𝐴𝐵 = −𝐟𝐵𝐴

• And because they add up in a very simple way:

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

• These principles form the foundation of all Newtonian based
simulations, including solid dynamics, rigid body dynamics, and fluid
dynamics

Differential Equations

• The forces in a system are generally based on the
current configuration of the system

• Mathematically, this says that the second derivative
(acceleration) of a value is dependent on the value
itself (and possibly it’s first derivative as well)

• This implies that the equations of motion will be
differential equations (as the equations contain
differentials…)

• In particular, they will be second order ordinary
differential equations

• Ultimately, we wish to integrate these to compute
positions over some time range

Integration

• Newton’s Second Law (f=ma) relates the physical forces
in a system to the kinematic accelerations

• Given initial conditions (initial positions and velocities),
we can integrate the accelerations to compute the
velocities and positions over time

• In practice, we won’t be able to compute an exact
integral because the system is too complicated and
produces equations that might not have exact integrals

• We therefore have to resort to a numerical integration
technique, where we rely on some degree of
approximation

Numerical Integration

• There are many techniques to numerically
integrate systems of ordinary differential
equations

• They differ in computational cost, accuracy,
stability, and flexibility

• We will spend the next lecture examining
them in more detail

• For today, we will stick to the simplest
method, known as the forward Euler method

Forward Euler Integration

• The forward Euler method uses the derivative at the start of the
time step to advance the simulation forward

• For example, to compute the new velocity at time step i+1, we use
the acceleration computed at time step i and assume it holds
constant for the duration of ∆𝑡

𝐯𝑖+1 = 𝐯𝑖 + 𝐚𝑖∆𝑡

• For the position integration, we do essentially the same thing,
except we use the new velocity instead of the previous velocity

𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡

• We will discuss this further in the next lecture…

Newtonian Simulation

• Newtonian simulations generally follow a pattern like this:

- Set up initial conditions
- while (not finished) {

- Compute all forces in the system, which can then be used to compute the
accelerations through f=ma
- Integrate the accelerations one small step forward in time to compute new velocities
and positions

}

• Sure, the details will get more complicated, but in general, we are
taking finite steps forward in time and evaluating forces at each
step

Particle Example

class Particle {
public:

void ApplyForce(vec3 &f) {Force+=f;}
void Integrate(float deltaTime) {

vec3 accel=(1/Mass) * Force;
Velocity += accel*deltaTime;
Position += Velocity*deltaTime;
Force=vec3(0);

}
private:

vec3 Position;
vec3 Velocity;
vec3 Force;
float Mass;

};

Energy

• The kinetic energy of a particle is
1

2
𝑚 𝐯 2

• There are also various forms of potential energy such
(gravity, springs, etc. can store energy as a potential)

• Energy in a system may convert between different
forms (kinetic, potential, thermal, electromagnetic…)
but the total energy in a system remains constant

• The subject of energy is important in physics, but
Newtonian formulations of the equations rarely make
direct use of it

• We will therefore not discuss it much today, but it will
come back from time to time in later lectures

Basic Forces

Uniform Gravity

• A very simple, useful force is the uniform gravity field:

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝐠0

𝐠0 = 0 −9.8 0
𝑚

𝑠2

• It assumes that we are near the surface of the Earth and we can approximate the
gravity as constant in both magnitude and direction

• 9.8 m/s2 is a reasonable approximation, as it actually ranges from roughly 9.76 to
9.83 around the world due to variations in altitude and local density

• By definition, standard gravity is 9.80665 m/s2, which is a number agreed upon in
1901 and is used in various standards of weight and mass, and would make a good
choice as a default gravity value for simulations

• There also exist detailed maps of Earth’s gravity that account for variation in
direction and magnitude of the local gravity vector at the surface

Inverse-Square Gravity

• If we are modeling orbital mechanics, planetary systems, or galaxies, we need to
consider the full inverse-square law of gravity acting between two bodies

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• Where G is the universal gravitational constant (2014 version):

𝐺 = 6.67408 × 10−11
𝑚3

𝑘𝑔 ∙ 𝑠2

• d is the distance between the two bodies: 𝑑 = 𝐫1 − 𝐫2

• And e is a unit length vector pointing in the direction of gravitational attraction
(i.e., towards the other body)

Inverse-Square Gravity

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• We need to consider the gravitational force acting on every pair of bodies
• In a system of n bodies, this means we need to compute a gravitational

force Τ𝑛 𝑛 − 1 2 times
• In terms of algorithm performance, this implies O(n2) performance, which

is potentially slow for large values of n
• It turns out that for galactic simulations with millions of particles, we can

actually achieve O(n log n) performance using some octree techniques
• For big-bang simulations in periodic domains with billions of particles, we

can even achieve O(n) performance using some Fourier techniques
• We will discuss these techniques in more detail in a later lecture

Aerodynamic Drag

• Aerodynamic interactions are very complex and difficult to model accurately

• For particles, we can use a reasonable simplification to describe the total aerodynamic drag
force on an object:

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Where 𝜌 is the density of the surrounding fluid (air, water, etc.), 𝑐𝑑 is the coefficient of drag
for the object, a is the cross sectional area of the object, and e is a unit vector in the opposite
direction of the velocity:

𝐞 = −
𝐯

𝐯

• Also, keep in mind that we really want the relative velocity, which is the different between
the particle velocity and the average velocity of the surrounding fluid

𝐯 = 𝐯𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝐯𝑓𝑙𝑢𝑖𝑑

Fluid Density: 𝜌

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The fluid density 𝜌 of air at 15o C and a pressure of
101.325 kPa (14.696 psi) is 1.225 kg/m3 and is used as
a common default value

• For aircraft simulations, one could use more advanced
density models that vary with altitude, temperature,
and humidity

• The fluid density 𝜌 of liquid water is 999.8 kg/m3 at 0o

C and 997.0 kg/m3 at 25o C at sea level

Drag Coefficient: 𝑐𝑑

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The aerodynamic drag force uses a unit-less constant 𝑐𝑑 called the drag
coefficient

• This number effectively quantifies the aerodynamic drag of the particular
shape, and typically ranges from around 0.01 (very streamlined) to 1.5
(bluff body)

• A sphere has a 𝑐𝑑 around 0.47 and a cube has a 𝑐𝑑 around 1.05
• The Tesla Model 3 has a 𝑐𝑑 of 0.23 and a Jeep Wrangler has a 𝑐𝑑 of 0.58
• A person on a bicycle has a 𝑐𝑑 around 1.0 and a person running has a

𝑐𝑑 around 1.2
• A Formula-1 race car actually has a 𝑐𝑑 near 1.4! This is because the

aerodynamics of the car body are designed to generate downforce to keep
the car on the ground in tight turns. This downforce has to increase drag
due to conservation of momentum

Cross Sectional Area: 𝑎

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• In the aerodynamic drag equation above, a refers to
the cross sectional area of the object moving through
the surrounding fluid

• This means the area when viewed from the direction of
motion

• For a spherical object of radius r, it would be 𝜋𝑟2

• For a car driving forward, this would be the area of the
front of the car viewed with an orthographic projection

Aerodynamic Drag

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Most of the values here are constants (𝜌, 𝑐𝑑, 𝑎), and e
is just used to specify the direction the force acts

• Therefore, when we really boil this down, we see that
the aerodynamic drag force is proportional to velocity
squared

𝑓𝑑𝑟𝑎𝑔 ∝ 𝑣2

Springs

• We can use Hooke’s Law to model simple linear spring
forces:

𝐟𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑠𝐱

• Where 𝑘𝑠 is the spring constant describing the stiffness of
the spring and x is a vector describing the displacement

• The spring force is therefore going to work against the
displacement

• The direction of the force will be along the axis of the
spring and will pull if the spring is extended and push if the
spring is compressed

Springs

• In practice, it’s nice to define a spring as connecting
two particles and having a rest length 𝑙0 where the
spring force is 0

• This gives us:

𝑥 = 𝐫1 − 𝐫2 − 𝑙0

𝐞 =
𝐫1−𝐫2

𝐫1−𝐫2

𝐱 = 𝑥𝐞

𝑙0

𝑙0𝑥

𝐫1 𝐫2

𝐫1 𝐫2

𝐱

Springs

• A spring applies equal and opposite forces to two
particles, and therefore explicitly obeys Newton’s
Third Law

• They should also obey the Laws of Conservation
of Momentum and Conservation of Energy

• In practice however, how well they obey these
laws is due to the numerical integration scheme
used

• We will discuss this in more detail in the next
lecture

Dampers

• We can apply damping forces between particles:

𝐟𝑑𝑎𝑚𝑝 = −𝑘𝑑𝑣𝑐𝑙𝑜𝑠𝑒𝐞

• 𝑘𝑑 is the damping constant, 𝑣𝑐𝑙𝑜𝑠𝑒 is the closing velocity, and 𝐞 is a unit
vector that provides the direction (𝐞 works the same as with springs)

• Dampers will oppose any difference in velocity between particles
• The damping forces are equal and opposite, so they should conserve

momentum, but they will remove energy from the system by design
• In real dampers, kinetic energy of motion is converted into complex fluid

motion within the damper and then diffused into random molecular
motion in the form of heat

• In other words, the kinetic energy of motion is effectively lost, but
Conservation of Energy is still obeyed because the kinetic energy is
converted into thermal energy

Closing Velocity

• To calculate the damping force, we need to calculate
the closing velocity between two particles

• This is the rate that the two particles are
approaching each other

𝑣𝑐𝑙𝑜𝑠𝑒 = 𝐯2 − 𝐯1 ∙ 𝐞

𝐫2𝐫1

𝐯2

𝐯1
𝐞

Spring-Dampers

• It is common to combine a spring and a damper into
a single entity called a spring-damper

• A spring-damper connects two particles and has a
rest length 𝑙0, a spring constant 𝑘𝑠, and a damping
constant 𝑘𝑑

Spring-Damper Example

class SpringDamper {
public:

void ComputeForces();
private:

Particle *P1,*P2;
float SpringConstant;
float DampingConstant;
float RestLength;

};

Spring-Damper Example

SpringDamper::ComputeForces() {
// Get kinematic particle properties
const vec3 &r1=P1->GetPosition(), &r2=P2->GetPosition();
const vec3 &v1=P1->GetVelocity(), &v2=P2->GetVelocity();

// Compute kinematic properties based on both particles
float dist=distance(r1,r2); // Distance between particles
vec3 e=(r1-r2)/dist; // Unit vector for direction
float x=dist-RestLength; // Displacement
float v=dot((v2-v1),e); // Closing velocity

// Compute spring-damper force
vec3 force=(- SpringConstant*x - DampingConstant*v) * e;

// Apply force to particles
P1->ApplyForce(force); // Apply force to P1
P2->ApplyForce(-force); // Apply equal and opposite force to P2

}

Combining Forces

• All of the different forces we’ve examined can be
combined by simply adding them together

• The total force on a particle is just the sum of all
of the individual forces

• In each step of the simulation, we compute all of
the forces in the entire system at the particular
instant

• We then use those forces to integrate the
accelerations to compute new velocities and
positions at some finite time step later

