Lecture 21: Buffering & Scheduling

CSE 123: Computer Networks
Aaron Schulman
Lecture 21 Overview

- Buffer Management
 - FIFO
 - RED

- Traffic Policing/Scheduling
Key Router Challenges

- **Buffer management**: which packet to drop when?
 - We only have finite-length queues
- **Scheduling**: which packet to transmit next?
Basic Buffer Management

- FIFO + drop-tail
 - Simplest choice
 - Used widely in the Internet
- FIFO (first-in-first-out)
 - Implies single class of traffic
- Drop-tail
 - Arriving packets get dropped when queue is full regardless of flow or importance
- Important distinction:
 - FIFO: scheduling discipline
 - Drop-tail: drop policy
FIFO/Drop-Tail Problems

- Leaves responsibility of congestion control completely to the edges (e.g., TCP)
- Does not separate between different flows
- No policing: send more packets → get more service
- Synchronization: end hosts react to same events
Active Queue Management

- Design active router queue management to aid congestion control

Why?
- Router has unified view of queuing behavior
- Routers see actual queue occupancy (distinguish queue delay and propagation delay)
- Routers can decide on transient congestion, based on workload
Design Objectives

- Keep throughput high and delay low
 - High power (throughput/delay)

- Accommodate bursts

- Queue size should reflect ability to accept bursts rather than steady-state queuing

- Improve TCP performance with minimal hardware changes in router
Random Early Detection

- Detect incipient congestion
- Assume hosts respond to lost packets
- Avoid window synchronization
 - Randomly mark packets
- Avoid bias against bursty traffic
Maintain running average of queue length in router

If $\text{avg} < \text{min}_{\text{th}}$ do nothing
 - Low queuing, send packets through

If $\text{avg} > \text{max}_{\text{th}}$, drop packet
 - Protection from misbehaving sources

Else drop/mark packet in a manner proportional to queue length
 - Notify sources of incipient congestion
 - Dropping vs Marking tradeoff (Explicit Congestion Notification)
RED Operation

Max thresh

Min thresh

Average Queue Length

P(drop)

1.0

max_P

min_th

max_th

Avg queue length
Scheduling

- So far we’ve done flow-based traffic policing
 - Limit the rate of one flow regardless of the load in the network

- In general, need scheduling
 - Dynamically allocate resources when multiple flows compete
 - Give each “flow” (or traffic class) own queue (at least theoretically)

- Weighted fair queuing
 - Proportional share scheduling
 - Schedule round-robbins among queues in proportion to some weight parameter
1 UDP (10 Mbps) and 31 TCPs sharing a 10 Mbps line
UDP vs. TCP w/FIFO

![Graph showing throughput vs. flow number with FIFO]

CSE 123 – Lecture 21: Buffering & Scheduling
TCP vs. UDP w/Fair Queuing

![Graph showing throughput (Mbps) vs. flow number with Fair Queuing (FQ) indicated.](image-url)
(Weighted) Fair Queuing

Flow 1
Flow 2
Flow n

I/P

O/P
Fair Queuing

- Maintain a queue for each flow
 - What is a flow?

- Implements max-min fairness: each flow receives $\min(r_i, f)$, where
 - r_i – flow arrival rate
 - f – link fair rate (see next slide)

- Weighted Fair Queuing (WFQ) – associate a weight with each flow to divvy bandwidth up non-equitably
If link congested, compute f such that

$$\sum_i \min(r_i, f) = C$$

- $\min(8, 4) = 4$
- $\min(6, 4) = 4$
- $\min(2, 4) = 2$
Another Example

- Associate a weight w_i with each flow i
- If link congested, compute f such that

$$\sum_i \min(r_i, f \times w_i) = C$$

$$(w_1 = 3) 8$$
$$(w_2 = 1) 6$$
$$(w_3 = 1) 2$$

$f = 2$:
- $\min(8, 2 \times 3) = 6$
- $\min(6, 2 \times 1) = 2$
- $\min(2, 2 \times 1) = 2$

Flow i is guaranteed to be allocated a rate $\geq \frac{w_i \times C}{\sum_k w_k}$

If $\sum_k w_k \leq C$, flow i is guaranteed to be allocated a rate $\geq w_i$
Flows can be served one bit at a time

WFQ can be implemented using bit-by-bit weighted round robin
 - During each round from each flow that has data to send, send a number of bits equal to the flow’s weight
● **Red flow** has packets backlogged between time 0 and 10
● Other flows have packets continuously backlogged
● All packets have the same size
Packet-Based Implementation

- Packet (Real) system: packet transmission cannot be preempted. Why?

- Solution: serve packets in the order in which they would have finished being transmitted in the fluid flow system
Select the first packet that finishes in the fluid flow system.
For next time...

- Changing gears severely next lecture!
- Read Ch. 1.5 in P&D