
CSE 152 : Introduction to Computer Vision, Spring 2018
– Assignment 2

Instructor: Ben Ochoa

Assignment Published On: Wednesday, April 11, 2018

Due On: Wednesday, April 25, 2018, 11:59 PM

Instructions
Review the academic integrity and collaboration policies on the course website.
This assignment must be completed individually.
This assignment contains both math and programming problems.
All solutions must be written in this notebook
For the Math problems you may use Markdown/LATEX or you can work it out on paper and upload the
scanned copy after merging with the .ipynb PDF. Remember to show work and describe your solution.
Programming aspects of this assignment must be completed using Python in this notebook.
If you want to modify the skeleton code, you can do so. This has been provided just to provide you
with a framework for the solution.
You may use python packages for basic linear algebra (you can use numpy or scipy for basic
operations), but you may not use packages that directly solve the problem.
If you are unsure about using a specific package or function, then ask the instructor and teaching
assistants for clarification.
You must submit this notebook exported as a pdf. You must also submit this notebook as .ipynb file.
You must submit both files (.pdf and .ipynb) on Gradescope. You must mark each problem on
Gradescope in the pdf.
It is highly recommended that you begin working on this assignment early.

Problem 1: Geometry [20 points]
Consider a line in the 2D plane, whose equation is given by . This can equivalently be written
as , where and . Noticing that is a homogeneous representation of

, we can view as a homogeneous representation of the line . We see that the line
is also defined up to a scale since and with represents the same line. All points
that lie on the line satisfy the equation .

1. [4 points] Using Euclidean coordinates, find the equation of the line perpendicular to the family of lines
 whereas and at a distance from the origin. Your answer should be

represented only in terms of the given parameters.

2. [6 points] Prove the following two statements that follow from .
a). The cross product between two points gives us the line connecting the two points
b). The cross product between two lines gives us their point of intersection

3. [4 points] What is the line, in homogenous coordinates, joining the inhomogeneous points and
.

4. [6 points] When a rectangle is observed under pinhole perspective, the image will be arbitrary

quadrilateral . Answer the following questions using your newly learned skilled in working
with homogeneous representations.
a). [3 points] For any arbitrarily imaged rectangle with non zero area, can ever be a
non-convex quadrilateral? Explain the intuition behind your answer. (Note: A convex polygon is a
simple polygon (not self-intersecting) in which no line segment between two points on the boundary
ever goes outside the polygon.)
b). [3 points] Let , , and be the vertices of the image.
Find all the vanishing points of the quadrilateral (i.e. the points of intersections of pairs of opposite lines
through and given .

a + b + c = 0x ̃ y ̃

x = 0l⊤ l = (a, b, c)⊤ x = (, , 1x ̃ y ̃)⊤ x

= (,x̃ x ̃ y ̃)⊤ l a + b + c = 0x ̃ y ̃

(a, b, c)⊤ k(a, b, c)⊤ k ≠ 0 (x, y)

a + b + c = 0x ̃ y ̃ x = 0l⊤

Statement 1:A point x lies on the line l if and only if x = l = 0l⊤ x⊤

y = x + λ λ ∈ (−∞,∞) d

Statement 1

(1, 4)

(4, 5)

ABCD

A′B′C ′D′

ABCD A′B′C ′D′

= (t, t)A′ = (t, 6t)B′ = (4t, 6t)C ′ = (2t, 4t)D′

{ , }A′B′ C ′D′ { , }B′C ′ A′D′ t = 1

Problem 2: Image Formation and Rigid Body Transformations [20
points]
In this problem we will practice rigid body transformations and image formations through the projective camera
model. The goal will be to photograph the following four points , ,

, in the world coordinate frame. First, recall the following formula for rigid
body transformation

Where is the point coordinate in the camera coordinate system. is a point in the world coordinate
frame, and and are the rotation and translation that transform points from the world coordinate frame to the
camera coordinate frame. Together, and are the camera parameters. Once transformed to the
camera coordinate frame, the points can be photographed using the camera calibration matrix , which
embodies the camera parameters, and the canonical projection matrix . Given , and , the

image of a point is , where the homogeneous points and

. We will consider four different settings of focal length, viewing angles and camera positions
below.

a). The extrinsic transformation matrix,

b). Intrinsic camera matrix under the perspective camera assumption.

c). Calculate the image of the four vertices and plot using the supplied plot_points function (see e.g. output in
figure below).

1. [No rigid body transformation]. Focal length = 1. The optical axis of the camera is aligned with the z-
axis.

2. [Translation]. . The optical axis of the camera is aligned with the z-axis.

= [-1 -0.5 2X1]T = [1 -0.5 2X2]T

= [1 0.5 2X3]T = [-1 0.5 2X4]T

= R + tX˜cam X˜

X˜cam X˜

R t

R t extrinsic

3 × 3 K

intrinsic [I|0] K, R t

X˜ x = K[I|0] = K[R|t]XXCam = (, 1XCam X˜
⊤

Cam)⊤

X = (, 1X˜
⊤

)⊤

t = [0 0 1]T

3. [Translation and Rotation]. Focal length = 1. encodes a 30 degrees around the z-axis and then 60
degrees around the y-axis. .

4. [Translation and Rotation, long distance]. Focal length = 5. encodes a 30 degrees around the z-axis
and then 60 degrees around the y-axis. .

We will not use a full intrinsic camera matrix (e.g. that maps centimeters to pixels, and defines the coordinates
of the center of the image), but only parameterize this with f, the focal length. In other words: the only parameter
in the intrinsic camera matrix under the perspective assumption is f.

For all the four cases, include a image like above. Note that the axis are the same for each row, to facilitate
comparison between the two camera models. Note: the angles and offsets used to generate these plots may be
different from those in the problem statement, it's just to illustrate how to report your results.

Also, Explain why you observe any distortions in the projection, if any, under this model.

R

t = [0 0 1]T

R

t = [0 0 13]T

In []: import numpy as np
import matplotlib.pyplot as plt

convert points from euclidian to homogeneous
def to_homog(points):
 """
 your code here
 """
 return points_homog

convert points from homogeneous to euclidian
def from_homog(points_homog):
 """
 your code here
 """
 return points

project 3D euclidian points to 2D euclidian
def project_points(P_int, P_ext, pts):
 """
 your code here
 """
 #return the 2d euclidean points
 pts_2d=np.zeros([2,1])
 return pts_2d

def camera1():
 """
 replace with your code
 """
 P_int_proj = np.eye(3,4)
 P_ext = np.eye(4,4)
 return P_int_proj, P_ext

def camera2():
 """
 replace with your code
 """
 P_int_proj = np.eye(3,4)
 P_ext = np.eye(4,4)
 return P_int_proj, P_ext

def camera3():
 """
 replace with your code
 """
 P_int_proj = np.eye(3,4)
 P_ext = np.eye(4,4)
 return P_int_proj, P_ext

def camera4():
 """
 replace with your code
 """
 P_int_proj = np.eye(3,4)
 P_ext = np.eye(4,4)

 return P_int_proj, P_ext

test code. Do not modify

def plot_points(points, title='', style='.-r', axis=[]):
 inds = list(range(points.shape[1]))+[0]
 plt.plot(points[0,inds], points[1,inds],style)
 if title:
 plt.title(title)
 if axis:
 plt.axis('scaled')
 #plt.axis(axis)

def main():
 point1 = np.array([[-1,-.5,2]]).T
 point2 = np.array([[1,-.5,2]]).T
 point3 = np.array([[1,.5,2]]).T
 point4 = np.array([[-1,.5,2]]).T
 points = np.hstack((point1,point2,point3,point4))

 for i, camera in enumerate([camera1, camera2, camera3, camera4]):
 P_int_proj, P_ext = camera()
 plt.subplot(1, 2, 1)
 plot_points(project_points(P_int_proj, P_ext, points), title='Ca
mera %d Projective'%(i+1), axis=[-.6,.6,-.6,.6])
 plt.show()

main()

Problem 3: Image Rendering [20 points]
In this exercise, we will render the image of a face with two different point light sources using a Lambertian
reflectance model. We will use two albedo maps, one uniform and one that is more realistic. The face
heightmap, the light sources, and the two albedo are given in facedata.npy for Python (each row of the
`lightsource' variable encode a light location). The data from facedata.npy is already provided to you.

Note: Please make good use out of subplot to display related image next to eachother.

Plot both albedo maps using imshow. Explain what you see.

Using both the heightmap and the albedo, plot the face using plot_surface. Do this for both albedos. Explain
what you see.

Calculate the surface normals and display them as a quiver plot using quiver in matplotlib.pyplot in Python.
Recall that the surface normals are given by

Also, recall, that each normal vector should be normalized to unit length.

For each of the two albedos, render three images. One for each of the two light sources, and one for both light-
sources combined. Display these in a subplot figure with titles. Recall that the general image formation
equation is given by

where is the albedo for pixel , is the corresponding surface normal, the light source
direction, the light source intensity, the distance to the light. Let the light source intensity be and do

 make the `distant light source assumption'. Use imshow with appropriate keyword arguments .

3.1 Plot the face in 2-D [2 pts]

3.2 Plot the face in 3-D [2 pts]

3.3 Surface normals [8 pts]

[− ,− , 1].
δf

δx

δf

δy

3.4 Render images [8 pts]

2 × 3

I = a(x, y) (x, y (x, y)n̂)⊤s ̂
s0

(d(x, y))2

a(x, y) (x, y) (x, y)n̂ (x, y)s ̂

s0 d(x, y) 1

not

In [26]: import numpy as np
import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
Load facedata.npy as ndarray
face_data = np.load('facedata.npy',encoding='latin1')
Load albedo matrix
albedo = face_data.item().get('albedo')
Load uniform albedo matrix
uniform_albedo = face_data.item().get('uniform_albedo')
Load heightmap
heightmap = face_data.item().get('heightmap')
Load light source
light_source = face_data.item().get('lightsource')

