
CSE 127 Computer Security
Alex Gantman, Spring 2018, Lecture 19

SDLC: Secure Development Lifecycle

Defining Security

ǐSecurity is not a functionality feature
ƵMost of computer science is about providing functionality:

ǐUser Interface, Software Design, Algorithms, Operating Systems/Networking,
Compilers/PL, Microarchitecture

ƵComputer security is not about functionality

ǐIt is about how the embodiment of functionality behaves in the presence of an
adversary.

ǐMaking sure the system does what it was supposed to do and only what it was
supposed to do.

ǐHolistic property
ƵȰ3ÏÆÔ×ÁÒÅ ÓÅÃÕÒÉÔÙ ÉÓ ÁÂÏÕÔ ÉÎÔÅÇÒÁÔÉÎÇ ÓÅÃÕÒÉÔÙ ÐÒÁÃÔÉÃÅÓ ÉÎÔÏ ÔÈÅ ×ÁÙ ÙÏÕ ÂÕÉÌÄ
ÓÏÆÔ×ÁÒÅȟ ÎÏÔ ÉÎÔÅÇÒÁÔÉÎÇ ÓÅÃÕÒÉÔÙ ÆÅÁÔÕÒÅÓ ÉÎÔÏ ÙÏÕÒ ÃÏÄÅȱ ɀGary McGraw

Secure Development Lifecycle

ǐHow can we develop more robust systems?

ǐPrevention
ƵHow can we minimizethe numberof vulnerabilities introduced during

development?

ǐMitigation
ƵHowcanweminimize the impact of vulnerabilities that remain?

ǐResponse
ƵHow can we remediate newly discovered vulnerabilities in deployed products?

Secure Development Lifecycle

Prevention Mitigation Response

Secure Development Lifecycle

ǐNice ÓÔÏÒÙȟ ÂÕÔȣ ÔÈÁÔȭÓ ÎÏÔ ÈÏ× ÉÔ ×ÏÒËÓȢ

ǐIt all begins with an incident
ƵE.g. vulnerability report, exploit release, etc.

Incident Response

ǐ3Ï ÙÏÕ ÇÅÔ Á ÂÕÇȾÖÕÌÎÅÒÁÂÉÌÉÔÙ ÒÅÐÏÒÔȣ
ƵExample: Meltdown/Spectre

ǐȰ7Å ÈÁÖÅ ÄÉÓÃÏÖÅÒÅÄ ÔÈÁÔ #05 ÄÁÔÁ ÃÁÃÈÅ ÔÉÍÉÎÇ ÃÁÎ ÂÅ ÁÂÕÓÅÄ ÔÏ ÅÆÆÉÃÉÅÎÔÌÙ ÌÅÁË
information out of mis-speculated execution, leading to (at worst) arbitrary virtual
memory read vulnerabilities across local security boundaries in various contexts.ȱ

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Incident Response

ǐStep 1: What does it mean?
ƵWhat is the root cause of the vulnerability?

ǐRequires deep technical understanding of the system.

ǐHave to break through abstraction boundaries.

ƵWhat does it enable an attacker to do?

ǐRequires understanding of the threat model (what needs to be protected from whom)
and modern exploitation techniques.

ƵWhat is the impact on the user?

ǐRequires understanding how products are used by real users.

Incident Response

ǐStep 2: Address the issue.
ƵDevelop fix.

ǐIdeally, without introducing new bugs in the process.

ǐProperly understanding the vulnerability and exploitation techniques is necessary to
develop a correct fix.

ǐAside: what if the vulnerability is in third-party code?

ƵPropagate fix to impacted product variants.

ǐDepending on your industry, you may have many variations of the same software that
need to be updated.

ǐHave to understand the entire software supply chain and lifecycle.

Ƶ&ÒÏÍ ÄÅÖÅÌÏÐÅÒȭÓ ËÅÙÂÏÁÒÄ ÔÏ ÔÈÅ ÌÁÎÄÆÉÌÌȢ

ƵDo you really know what is going into production?

ƵPatch/Notify customers.

Incident Response

ǐStep 3: Analyze the gap.
ƵStart working backwards to identify and address gaps in existing process.

ƵResponse

ǐHow could you have handled the response better?

ƵMitigation

ǐWhat countermeasures would have mitigated the impact?

ƵPrevention

ǐHow could you have prevented the vulnerability from being released?

Gap Analysis

Prevention Mitigation Response

Gap Analysis: Response

ǐHow can you learn about new incidents as early as possible?
ƵWas the issue reported privately? Did you learn about it from reading the news?

ǐEstablish cooperative relationships with security researchers
ƵEasy to find web page with information on how to report vulnerabilities to the

security team
Ƶ2ÅÓÐÏÎÓÉÖÅ ȰÓÅÃÕÒÉÔÙΆȱ ÍÁÉÌ ÁÄÄÒÅÓÓ
ƵEncourage/incentivize direct reporting of vulnerabilities
ǐIf your security program is mature enough, consider a bug bounty

ǐAside: Full Disclosure vs Responsible Disclosure vs Coordinated Disclosure
Ƶ If you discover a previously unpublished security vulnerability, I encourage you to

report it to the system developers/maintainers
ǐCheck following directories or try emailing security@<domain>
Ƶ https://hackerone.com/directory
Ƶ https://www.bugcrowd.com/bug-bounty-list/

https://hackerone.com/directory
https://www.bugcrowd.com/bug-bounty-list/

Gap Analysis

Prevention Mitigation Response

Gap Analysis: Mitigation

ǐWhat countermeasures would have mitigated the impact?
ƵNot all vulnerabilities will be discovered prior to release.

ǐCountermeasures can make reliable exploitation harder or mitigate
the impact of remaining vulnerabilities.
ƵCan make exploit development more difficult and costly.

ƵWill not stop all exploits.

Gap Analysis: Mitigation

ǐIdentify and implement available countermeasures.
ƵNeed to understand the current state of the art, cost/benefit tradeoffs,

constraints of your platform, etc.

ƵSome countermeasures may already be present and only need to be properly
configured and enabled.

ƵOthers may need to be re-implemented or ported on your particular platform.

ƵNeed continuous process to test proper configuration.

ǐResearch and develop new countermeasures.
ƵNew offensive and defensive techniques are continuously being developed.

ǐDevelopers introduce new features. Attackers devise ways to exploit these features.
Defenders devise new countermeasures. Attackers adapt to the new countermeasures,
ÄÅÆÅÎÄÅÒÓ ÒÅÆÉÎÅ ÔÈÅÉÒ ÁÐÐÒÏÁÃÈȟ ȣ

Gap Analysis

Prevention Mitigation Response

Gap Analysis: Prevention

ǐHow could you have prevented the vulnerability from being released?
ƵSecure Software Development training for engineers.

ƵAutomated tools to detect vulnerabilities prior to release.

ƵDesigningthe systemwith securityin mind.

Gap Analysis: Prevention

ǐSecure Software Training
ƵFor the last 30 years, most CS graduates had no background in computer

security

ǐNo idea of what types of vulnerabilities are possible, how they are exploited, what they
look like, how to fix them, etc.

ǐUCSD recently made security a required part of the curriculum.

ƵCompanies develop custom training to fill the gap

ǐUsing real in-house code helps make the training relevant.

ǐFocus on how to avoid, detect, and address typical software vulnerabilities.

Gap Analysis: Prevention

ǐCode reviews

ǐAutomated tools to detect vulnerabilities prior to release.
ƵStatic Analysis

ƵDynamic Analysis

Gap Analysis: Prevention

ǐCode reviews
ƵPros:

ǐA consistently high-yield approach to finding security vulnerabilities

ǐOnly dependency is access to source

ƵNo tools to configure,no build systemto integratewith,ȣ

ƵCons:

ǐDoesnot scalewell

ƵTherearea lot of developers writing a lot of code

ƵEasyto burnout from continuouscode reviews

ƵSuccesshighlydependenton expertiseof the reviewer

Gap Analysis: Prevention

ǐToscale,weneed to automate

ǐStatic Analysis
ƵCompiler-like analysis of the source code, looking for error-prone areas

ǐEg: Coverity, KLOCWork

Gap Analysis: Prevention

ǐStatic Analysis
ƵPros:

ǐVery good at finding some types of vulnerabilities.

ƵCustom checkers can be added to detect specific security issues.

ƵCons:

ǐCan have high false positive rates.

ǐNo tool workswell out of the box.

ǐNeed tobe integratedwith the buildsystemandtuned to the idioms of the target
codebase.

Gap Analysis: Prevention

ǐSome vulnerabilities may be easier to discover with dynamic testing
ƵSomemayonlybediscoverable withdynamictesting

ǐDynamic Analysis/Adversarial Testing/Fuzzing
ƵSubject system to _very_ large amounts of tests exercising edge and error cases

ƵCombine with instrumentation (sanitizers)

ƵActiveareaof research

ƵExample: AFL

ǐhttp://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

Fuzzing

ǐTest case generation
ƵRandom

ƵMutational

ǐStart with acorpusof validtest casesandmutate them

ƵGenerational

ǐDevelop a model (grammar) for the input format and use it to generate test cases

Fuzzing

ǐCode coverage
ƵHowto measure coverage?

ƵLinecoverage

ƵBranchcoverage

ƵPath coverage

ǐCoverage can be a useful
feedback function
ƵGuide the fuzzerto explore new

areas of code

ǐThe real goal though, is to find
bugs, not maximize coverage

char bar[20];

if (j > 20)
return;

for (i = 0; i <= j; i ++)
bar[i] = foo[i];

Gap Analysis: Prevention

ǐFuzzing
ƵPros:

ǐVeryeffectivebug-finding technique

ǐHighlyscalable, can run in the background

ƵCons:

ǐDeepbugs are hard to trigger

ƵConcolic testing

ǐCrash overload

Gap Analysis: Prevention

ǐDesigning the system for security and containment of compromise.
ƵDefining a threat model (what should be protected from whom)

ƵIdentifying and evaluating risks

ƵBuilding in defenses

Risk Assessment

ǐRisk assessment/risk analysis process for assessing risk in a system:
1. Start by understanding system requirements

2. Identify assets and attackers

3. Establish security requirements

4. Evaluate system design

5. Identify threats and classify risks

6. Address identified risks

Gap Analysis: Prevention

ǐBuilding in defenses
ƵIsolation of components to contain damage from spill-over

ƵHardening of security boundaries

ƵRe-architecting of high-risk components for sandboxing

Secure Development Lifecycle

Prevention Mitigation Response

Secure Development Lifecycle

ǐA methodology for building more secure systems

ǐManyvariations onthe same theme
ƵMicrosoft SDLC

ƵCigitalTouchpoints

ƵBuilding Security In Maturity Model (BSIMM)

ƵSafeCode

Ƶȣ

Secure Development Lifecycle

ǐMicrosoft SDLC
Ƶhttps://www.microsoft.com/en-us/sdl

ƵΧίίΦȭÓ ÁÎÄ #ÏÄÅ 2ÅÄ

Ƶ"ÉÌÌ 'ÁÔÅÓȭTrustworthyComputingMemo

ǐhttps://www.wired.com/2002/01/bill-gates-trustworthy-computing/

https://www.microsoft.com/en-us/sdl
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

Code Red

ǐȰ/Î July 19, 2001 more than 359,000 computers were infected with the
Code-Red (CRv2) worm in less than 14 hours. At the peak of the
infection frenzy, more than 2,000 new hosts were infected each
minuteȢȱ
Ƶhttps://www.caida.org/research/security/code-red/coderedv2_analysis.xml

https://www.caida.org/research/security/code-red/coderedv2_analysis.xml

"ÉÌÌ 'ÁÔÅÓƦ 4ÒÕÓÔ×ÏÒÔÈÙ #ÏÍÐÕÔÉÎÇ Memo

ǐhttps://www.wired.com/2002/01/bill-gates-trustworthy-computing/
ƵJanuary 2002

ƵȰ3Ï ÎÏ×ȟ ×ÈÅÎ ×Å ÆÁÃÅ Á ÃÈÏÉÃÅ ÂÅÔ×ÅÅÎ ÁÄÄÉÎÇ ÆÅÁÔÕÒÅÓ ÁÎÄ ÒÅÓÏÌÖÉÎÇ ÓÅÃÕÒÉÔÙ
issues, we need to choose security. Our products should emphasize security right
out of the box, and we must constantly refine and improve that security as threats
ÅÖÏÌÖÅȣ)Æ ×Å ÄÉÓÃÏÖÅÒ Á ÒÉÓË ÔÈÁÔ Á ÆÅÁÔÕÒÅ ÃÏÕÌÄ ÃÏÍÐÒÏÍÉÓÅ ÓÏÍÅÏÎÅ΄Ó ÐÒÉÖÁÃÙȟ
that problem gets solved first. If there is any way we can better protect important
data and minimize downtime, we should focus on this. These principles should
apply at every stage of the development cycle of every kind of software we create,
ÆÒÏÍ ÏÐÅÒÁÔÉÎÇ ÓÙÓÔÅÍÓ ÁÎÄ ÄÅÓËÔÏÐ ÁÐÐÌÉÃÁÔÉÏÎÓ ÔÏ ÇÌÏÂÁÌ 7ÅÂ ÓÅÒÖÉÃÅÓȢȱ

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

Secure Development Lifecycle

ǐMicrosoft SDLC
Ƶhttps://www.microsoft.com/en-us/sdl

https://www.microsoft.com/en-us/sdl

Secure Development Lifecycle

Secure Development Lifecycle

ǐCigitalTouchpoints
Ƶhttp://www.swsec.com/resources/touchpoints/

http://www.swsec.com/resources/touchpoints/

Secure Development Lifecycle

ǐBSIMM
Ƶhttps://www.bsimm.com/

ƵȰmultiyear study of [109] real-world
software security initiativesȱ

Ƶ113 activities across 12 practices,
organized into four domains

https://www.bsimm.com/

Secure Development Lifecycle

ǐCaveat emptor
ƵThe real development process is much more complex

ƵDetails will depend on the technology of your product, the nature of your
business, culture of your company,ȣ

