
CSE 127 Computer Security
Stefan Savage, Spring 2018, Lecture 3

Low Level Software Security I:
Buffer Overflows and Stack Smashing

Review

▪ Project 1 was due yesterday
– You should be comfortable using a debugger

▪ Project 2 is assigned today. Due 4/23 @ 10pm
– You get to write some exploits

▪ Smashing The Stack For Fun And Profit by Aleph One

▪ Chapter 6 from The Craft of System Security

When is a program secure?

▪ When it does exactly what it should?
– Not more.
– Not less.

▪ But how do we know what a program is supposed to do?
– Somebody tells us? (But do we trust them?)
– We write the code ourselves? (But what fraction of the software you use have

you written?)

When is a program secure?

▪ 2nd try: A program is secure when it doesn’t do bad things

▪ Easier to specify a list of “bad” things:
– Delete or corrupt important files
– Crash my system
– Send my password over the Internet
– Send threatening e-mail to the professor

▪ But… what if most of the time the program doesn’t do bad things,
but occasionally it does? Or could? Is it secure?

Weird Machines

▪ Complex systems almost always

contain unintended functionality

– “weird machines”

▪ An exploit is a mechanism by

which an attacker triggers

unintended functionality in the

system

– Programming of the weird machine

▪ Security requires understanding

not just the intended, but also the

unintended functionality present

in the implementation

– Developers’ blind spot

– Attackers’ strength

https://en.wikipedia.org/wiki/Weird_machine#/media/File:Weird_machine.png

What is a
software vulnerability?

▪ A bug in a software program that allows an unprivileged user
capabilities that should be denied to them

▪ There are a lot of types of vulnerabilities, but among the most classic
and important are vulnerabilities that violate “control flow integrity”
– Translation: lets attacker run the code of their choosing on your computer

▪ Typically these involve violating assumptions of the programming
language or its run-time system

Starting exploits

▪ Today we begin our dive into low level details of how exploits work
– How can a remote attacker get your machine to execute their code?

▪ Our threat model
– Victim code is handling input that comes from across a security boundary
▪ Examples:

– Image viewer, word processor, web browser
– Other examples?

– We want to protect integrity of execution and confidentiality of internal data
from being compromised by malicious and highly skilled users of our system.

▪ Simplest example: buffer overflow
– Provide input that ”overflows” the memory the program has allocated for it

Lecture Objectives

▪ Understand how buffer overflow vulnerabilities can be exploited

▪ Identify buffer overflow vulnerabilities in code and assess their
impact

▪ Avoid introducing buffer overflow vulnerabilities during
implementation

▪ Correctly fix buffer overflow vulnerabilities

Buffer Overflow

▪ Buffer Overflow is an anomaly that occurs when a program writes
data beyond the boundary of a buffer.

▪ Archetypal software vulnerability
– Ubiquitous in system software (C/C++)
▪ Operating systems, web servers, web browsers, embedded systems, etc.

– If your program crashes with memory faults, you probably have a buffer
overflow vulnerability.

▪ A basic core concept that enables a broad range of possible attacks
– Sometimes a single byte is all the attacker needs

▪ Ongoing arms race between defenders and attackers
– Co-evolution of defenses and exploitation techniques

Buffer Overflow

▪ No automatic bounds checking in C/C++. Developers should know
what they are doing and check access bounds where necessary.

▪ The problem is made more acute/more likely by the fact many C
standard library functions make it easy to go past array bounds.

▪ String manipulation functions like gets(), strcpy(), and
strcat() all write to the destination buffer until they encounter a
terminating ‘\0’ byte in the input.
– Whoever is providing the input (often from the other side of a security

boundary) controls how much gets written

Example 1: fingerd

http://minnie.tuhs.org/cgi-bin/utree.pl?file=4.3BSD/usr/src/etc/fingerd.c

▪ Spot the vulnerability
– What does gets() do?
▪ How many characters

does it read in?
▪ Who decides how much

input to provide?
– How large is line[]?
▪ Implicit assumption about input

length
– What happens if, say 536,

characters are provided as input?

▪ Source: fingerd code

Morris Worm

▪ This fingerd vulnerability was one
of several exploited by the Morris
Worm in 1988
– Created by Robert Morris

graduate student at Cornell)

▪ One of the first Internet worms
– Devastating effect on the Internet at

the time
– Took over hundreds of computers

and shut down large chunks of the
Internet

▪ Aside: first use of the US
Computer Fraud and Abuse Act
(CFAA)

https://en.wikipedia.org/wiki/Morris_worm

Ok but…

▪ Why does overflowing a buffer let you take over the machine?

▪ That seems crazy no?

Changing Perspectives

▪ Your program manipulates data

▪ Data manipulates your program

Buffer Overflow

▪ How does an array work?
– What’s the abstraction?
– What’s the reality?
▪ What happens if you try to write

past the end of an array in C/C++
▪ What does the spec say?
▪ What happens in most

implementations?
a[0] a[3] a[7+i]a[-i]

Understanding Function Calls

▪ How does a function call work?
– What’s the abstraction?
…
foo();
…

– What’s the reality?
▪ How does the called function know

where to return to?
▪ Where is the return address stored?

void foo()
{
…
…
return;

}

Understanding Function Calls

▪ godbolt compiler explorer: https://godbolt.org/

https://godbolt.org/

saved fp

saved fp

Understanding Function Calls

▪ Calling a function
– Caller
▪ Pass arguments
▪ Call and save return address

– Callee
▪ Save old frame pointer
▪ Set frame pointer = stack pointer
▪ Allocate stack space for local

storage

▪ Call Frame (Stack Frame)

ret addr

arg i+2
arg i+1
arg i

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

Callee frame

Caller frame

fp

sp

Stack

saved fp

saved fp

Understanding Function Calls

▪ When returning
– Callee
▪ Pop local storage

– Set stack pointer = frame pointer

▪ Pop frame pointer
▪ Pop return address and return

– Caller
▪ Pop arguments

ret addr

arg i+2
arg i+1
arg i

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

Callee frame

Caller frame

fp

sp

Stack

Understanding Function Calls

▪ godbolt compiler explorer: https://godbolt.org/

https://godbolt.org/

Smashing The Stack

▪ Mixing control and user data is never
a good idea.

▪ What happens if you overwrite an
attacker-supplied value past the
bounds of a local variable?
– Let’s say we overflow local 3

▪ Overwriting
– Another local variable
– Saved frame pointer
– Return address
– Function arguments
– Deeper stack frames
▪ Overwrite often happens outside of current

function’s frame
– Exception control data

saved fp

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

fp

sp

Stack

Smashing The Stack

▪ Overwriting local variables or function arguments
– Effect depends on variable semantics and usage
– Generally anything that influences future execution path is a promising target
– Typical problem cases:
▪ Variables that store result of a security check

– Eg. isAuthenticated, isValid, isAdmin, etc.

▪ Variables used in security checks
– Eg. buffer_size, etc.

▪ Data pointers
– Potential for further memory corruption

▪ Function pointers
– Direct transfer of control when function is called through overwritten pointer

Smashing The Stack

▪ Overwriting the return address
– Upon function return, control is

transferred to an attacker-chosen
address

– Arbitrary code execution
▪ Attacker can re-direct to their own

code, or code that already exists in
the process
– More on this later

▪ Game over

saved fp

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

fp

sp

Stack

Smashing The Stack

▪ Overwriting the saved frame
pointer
– Upon function return, stack moves

to an attacker-supplied address
– Control of the stack leads to

control of execution
– Even a single byte may be enough!

saved fp

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

fp

sp

Stack

Buffer Overflow Patterns

▪ Spotting buffer overflow bugs in code
– Missing Check
– Avoidable Check
– Wrong Check

Buffer Overflow Code Patterns

▪ Missing Check
– No test to make sure memory

writes stay within intended bounds

▪ Example
– fingerd

Buffer Overflow Code Patterns

▪ Avoidable Check
– The test to make sure memory

writes stay within intended bounds
can be bypassed

▪ Example
– libpng png_handle_tRNS()
– 2004

▪ Good demonstration of how an
attacker can manipulate
internal state by providing the
right input

http://www.libpng.org/pub/png/libpng.html

Buffer Overflow Code Patterns

▪ Avoidable Check
– Special case: check is late
– There is a test to make sure

memory writes stay within
intended bounds, but it is placed
after the offending operation

Buffer Overflow Code Patterns

▪ Wrong Check
– The test to make sure memory

writes stay within intended bounds
is wrong.

– Look for complicated runtime
arithmetic in length checks.
▪ Stay tuned for integer errors…

– Is NULL terminator accounted for?
– If you see non-trivial arithmetic

operations inside a length check,
assume something is wrong!

▪ Example
– OpenBSD realpath()
– August 2003

https://github.com/libressl-portable/openbsd/blob/OPENBSD_2_0/src/lib/libc/stdlib/realpath.c

Buffer Overflow Patterns

▪ Thinking like an attacker:
– Missing Check
▪ Does the code perform bounds checking on memory access?

– Avoidable Check
▪ Is the test invoked along every path leading up to actual access?

– Wrong Check
▪ Is the test correct? Can the test itself be attacked?

▪ Generic input validation patterns
– Applicable beyond just buffer overflows

Addressing Buffer Overflows

▪ The best way to deal with any bug is not to have it in the first place.
– Use memory-safe languages.
– Train the developers to write secure code and provide them with tools that make it

easier to do so.

▪ Language choice might not be an option (it frequently isn’t) and people still
make mistakes. So, we must also be able to find these bugs and fix them.
– Manual code reviews, static analysis, adversarial testing, etc.
– More on this later in the course…

▪ Failing all of the above, make remaining bugs harder to exploit.
– Introduce countermeasures that make reliable exploitation harder or mitigate the

impact
– Next lecture.

Avoiding Buffer Overflows

▪ Train the developers to write secure code.
– Provide developers with tools that make it easier to write secure code.

▪ Avoiding buffer overflow vulnerabilities requires validating the
lengths of untrusted input before performing read or write
operations into buffers.

▪ Common libc string functions do not encourage this practice and
make it easy to introduce buffer overflow vulnerabilities.

▪ However, better alternatives are available.

▪ Aside: default ways of doing something are often insecure.
Investigate security aspects of tools, frameworks, libraries, APIs, that
you are using and understand how to use them safely.

The Trouble With strc*()

▪ What’s the problem with libc string functions?
– Neither strcpy() nor strcat() validate that the destination string has enough

space to fit the source string.
– They also provide no mechanism to signal an error.

▪ Use of strcpy() and strcat() are common causes of buffer overflow
vulnerabilities.

▪ These functions are considered unsafe across the industry.

char buf[MAX_PATH_LEN];
/* assemble fully qualified name from provided path and file name */
strcpy(buf, path);
strcat(buf, "/");
strcat(buf, fname);

Replacing strc*()

▪ A first attempt at fixing strcpy()/strcat() was made with the strn*
family of functions.
– A third parameter was introduced to specify safe amount to copy

▪ strncpy() copies at most len characters from src into dst.
– If src is less than len characters long, the remainder of dst is filled with `\0'

characters. Otherwise, dst is not terminated.

▪ strncat() appends not more than count characters from append, and
then adds a terminating `\0’.

▪ At first sight the strn*() functions seem to address the problem.
However, a closer look reveals some remaining issues.

char *strncpy(char *dst, const char *src, size_t len);
char *strncat(char *s, const char *append, size_t count);

Problem: You have to use it right

▪ Vulnerability in htpasswd.c in Apache 1.3
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

▪ “Solution”
strncpy(record,user, MAX_STRING_LEN-1);
strcat(record,”:”);
strcat(record,cpw), MAX_STRING_LEN-1);

▪ Can write up to 2*(MAX_STRING_LEN-1) + 1 bytes!

char *copy(char *s) {
char buffer[BUF_SIZE];
strncpy(buffer, s, BUF_SIZE-1);
buffer[BUF_SIZE-1]= '\0';
return buffer;

}

More strncpy misuse…
What’s wrong with this code?

This program returns a pointer to local memory.

void main(int argc, char **argv) {
char program_name[256];
strncpy(program_name, argv[0],256);
f(program_name);

}

String program_name may not be null terminated.

More strncpy misuse…
What’s wrong with this code?

The Trouble With strnc*()

▪ strncpy()/strncat() are still problematic
– The above code is still vulnerable
– They DO NOT guarantee NULL termination.
– The design forces the developer to keep track of residual buffer lengths.
▪ Requires performing awkward arithmetic operations which can be easy to get wrong.

– There is still no way to check if the source string was truncated. If the source
string is larger than destination, the caller is never informed.

char buf[MAX_PATH_LEN];
/* assemble fully qualified name from provided path and file name */
strncpy(buf, path, sizeof(buf));
strncat(buf, "/", sizeof(buf)-strlen(path));
strncat(buf, fname, sizeof(buf)-strlen(path)-1);

strl*() To The Rescue

▪ In order to address the shortcomings of strncpy()/strncat(), the
strl* family of functions were designed.

▪ strlcpy() copies up to size-1 characters from the NULL-
terminated string src to dst, NULL-terminating the result.

▪ strlcat() appends the NULL-terminated string src to the end of
dst. It will append at most size-strlen(dst)-1 bytes, NULL-
terminating the result.

▪ The result is ALWAYS NULL-terminated.

size_t strlcpy(char *dst, const char *src, size_t size);
size_t strlcat(char *dst, const char *src, size_t size);

strl*() To The Rescue

▪ The return value for both functions represents the total length of the
string they tried to create, allowing the caller to detect truncation.

▪ Thus we can guarantee NULL-termination and prevent buffer
overflows without the burden of performing complicated run time
arithmetic operations.

char buf[MAX_PATH_LEN];
/* assemble fully qualified name from provided path and file name */
if ((strlcpy(buf, path, sizeof(buf)) >= sizeof(buf))

|| (strlcat(buf, "/", sizeof(buf)) >= sizeof(buf))
|| (strlcat(buf, fname, sizeof(buf)) >= sizeof(buf)))

{ /* handle truncation error */ }

strl*() To The Rescue

▪ Not everyone has embraced the salvation of strl*()

“One of the longest-running requests for the GNU C Library (glibc) is the addition of the
strlcpy() family of string functions… Despite years of requests, however, the glibc
maintainers have never allowed these functions to be added.

Back in 2000, one Christoph Hellwig posted a patch adding strlcpy() and strlcat() to glibc.
The glibc maintainer at that time, Ulrich Drepper, rejected the patch in classic style:

This is horribly inefficient BSD crap. Using these function only leads to other errors. Correct string
handling means that you always know how long your strings are and therefore you can you memcpy
(instead of strcpy).
Beside, those who are using strcat or variants deserved to be punished.

…Fourteen years after Christoph's patch was posted, there is still no strlcpy() in glibc.”

▪ Still not available in libc. Must use libbsd, or copy implementation from OpenBSD.

https://lwn.net/Articles/612244/

Review

▪ An attacker can direct the execution of your program by
manipulating input data it acts on.

▪ Assume input can be malicious. Validate lengths and bounds before
accessing arrays.

▪ Separate control data from user data.

▪ Default ways of doing something are often insecure. Investigate
security aspects of tools, frameworks, libraries, APIs, that you are
using and understand how to use them safely.

Review

▪ Writing past the bounds of a
buffer can have severe
consequences.

▪ Overwriting the return address
– Upon function return, control is

transferred to an attacker-chosen
address

– Arbitrary code execution
▪ Attacker can re-direct to their own

code

saved fp

arg i+2
arg i+1
arg i

ret addr

local 1
local 2
local 3
local 4

low address

high address

fp

sp

Stack

Additional Resources

▪ Memory Corruption Attacks: The Almost Complete History by Haroon
Meer, Black Hat USA 2010
– https://www.youtube.com/watch?v=stVz9rhTdQ8

▪ Code Injection in C and C++ : A Survey of Vulnerabilities and
Countermeasures by Yves Younan, Wouter Joosen, Frank Piessens
– www.cs.kuleuven.be/publicaties/rapporten/cw/CW386.pdf

▪ More in future lectures…

https://www.youtube.com/watch?v=stVz9rhTdQ8
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW386.pdf

Additional Resources

▪ John Regehr’s blog on undefined behavior
– https://blog.regehr.org/page/2?s=undefined
– Especially: https://blog.regehr.org/archives/213

▪ CERT Secure C Coding Standard
– https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

▪ Gimpel Software Bug Of The Month
– http://www.gimpel.com/html/bugs.htm

https://blog.regehr.org/page/2?s=undefined
https://blog.regehr.org/archives/213
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.gimpel.com/html/bugs.htm

Homework

▪ Project 2 is assigned. Due 4/23 @ 10pm.

– Exploiting memory corruption vulnerabilities.

▪ For next time:

Read Memory Errors: The Past, the Present, and the Future
by Victor van der Veen, Nitish dutt-Sharma, Lorenzo Cavallaro, and Herbert Bos

– https://www.isg.rhul.ac.uk/sullivan/pubs/tr/technicalreport-ir-cs-73.pdf

https://www.isg.rhul.ac.uk/sullivan/pubs/tr/technicalreport-ir-cs-73.pdf

Next Lecture…

Low Level Software Security II:
Shellcode, Countermeasures,…

