
Project 1 – Simple Ray Tracer

CSE 168: Rendering Algorithms, Winter 2017

Description
Write a simple ray tracer capable of rendering boxes and instances and outputting the image to a BMP

file. It should support diffuse lighting (without shadows) from both point & directional lights. It should

also have a simple camera model with adjustable camera matrix, field of view, and output resolution.

It should be able to run the code listed below in the Project 1 Function section. If you use C++, it should

be able to run the code with little or no modification. If you use a different programming language, or a

different vector library, or choose to name things differently, you can make minor changes.

Make sure to compile with optimization on. In VisualStudio, this means setting it to ‘Release’ build. The

final program should only take a second or so to render the image.

Starter Code
You can use the starter code provided to get the framework in place if you choose. From there, the key

components required are the ray-triangle intersection routine Triangle::Intersect(), and the camera ray

generation routine Camera::Render(). The lighting should be kept to a minimum.

The starter code can be found on the class web page.

It follows the examples in the slides from the first few lectures.

Project 1 Function
Whether or not you start with the sample code and even if you don’t use C++, the code you write should

be structured to be able to be run with the following sample code (or something very similar):

void project1() {
 // Create scene
 Scene scn;
 scn.SetSkyColor(Color(0.8f, 0.9f, 1.0f));

 // Create boxes
 MeshObject box1;
 box1.MakeBox(5.0f,0.1f,5.0f);
 scn.AddObject(box1);

 MeshObject box2;
 box2.MakeBox(1.0f,1.0f,1.0f);

 InstanceObject inst1(box2);
 glm::mat4x4 mtx=glm::rotate(glm::mat4x4(),0.5f,glm::vec3(1,0,0));

 mtx[3][1]=1.0f;
 inst1.SetMatrix(mtx);
 scn.AddObject(inst1);

 InstanceObject inst2(box2);
 mtx=glm::rotate(glm::mat4x4(),1.0f,glm::vec3(0,1,0));
 mtx[3]=glm::vec4(-1,0,1,1);
 inst2.SetMatrix(mtx);
 scn.AddObject(inst2);

 // Create lights
 DirectLight sunlgt;
 sunlgt.SetBaseColor(Color(1.0f, 1.0f, 0.9f));
 sunlgt.SetIntensity(0.5f);
 sunlgt.SetDirection(glm::vec3(-0.5f, -1.0f, -0.5f));
 scn.AddLight(sunlgt);

 PointLight redlgt;
 redlgt.SetBaseColor(Color(1.0f, 0.2f, 0.2f));
 redlgt.SetIntensity(2.0f);
 redlgt.SetPosition(glm::vec3(2.0f, 2.0f, 0.0f));
 scn.AddLight(redlgt);

 // Create camera
 Camera cam;
 cam.LookAt(glm::vec3(2.0f,2.0f,5.0f),glm::vec3(0.0f,0.0f,0.0f),glm::vec3(0,1,0));
 cam.SetResolution(800,600);
 cam.SetFOV(40.0f);
 cam.SetAspect(1.33f);

 // Render image
 cam.Render(scn);
 cam.SaveBitmap("project1.bmp");
}

Sample Images
The sample code above should generate the following image exactly, pixel for pixel:

The box on the left is actually interpenetrating with the ground box, but the ray tracing should resolve

this correctly because it should only accept the closest hit for each ray. If the box doesn’t render

correctly, then make sure your ray-triangle intersect routine is only accepting a hit if it is closer than any

previous hits.

If the render resolution is changed to cam.SetResolution(16,12), the image should look like this:

Or scaled up a bit:

This can be used to verify the correctness of the camera ray generation and camera field of view. If it

doesn’t match, double check that you are shooting rays through the center of each pixel, and also make

sure that you are converting the FOV from degrees to radians.

Grading
This project is worth 15 points:

- Render anything resembling the shape of a box 3

- Render instances correctly positioned 3

- Render correct scene geometry from correct camera position 3

- Camera FOV working exactly to the pixel 3

- Render with correct lighting 3

- Total 15

Extra Credit
For 1 extra credit point total, you must do all of the following:

- Add support for multiple derived Object types

- Implement a SphereObject

- Implement a PlaneObject

- Implement shadows

And then render an image something like this:

Code for the above image (NOTE- due to the random number generation, you may get different results):

void spheres() {
 // Create scene
 Scene scn;
 scn.SetSkyColor(Color(0.8f, 0.8f, 1.0f));

 // Create ground plane
 PlaneObject ground;
 scn.AddObject(ground);

 // Create spheres
 for(int i=0;i<20;i++) {
 SphereObject *sphere=new SphereObject;
 float rad=glm::linearRand(0.25f,0.5f);
 Vector3 pos(glm::linearRand(-5.0f,5.0f),rad,glm::linearRand(-5.0f,5.0f));
 sphere->SetRadius(rad);
 sphere->SetCenter(pos);
 scn.AddObject(*sphere);
 }

 // Create lights
 DirectLight sunlgt;
 sunlgt.SetBaseColor(Color(1.0f, 1.0f, 0.9f));
 sunlgt.SetIntensity(1.0f);
 sunlgt.SetDirection(Vector3(2.0f, -3.0f, -2.0f));
 scn.AddLight(sunlgt);

 // Create camera
 Camera cam;
 cam.LookAt(Vector3(-0.75f,0.25f,5.0f),Vector3(0.0f,0.5f,0.0f));
 cam.SetFOV(40.0f);
 cam.SetAspect(1.33f);

 cam.SetResolution(800,600);

 // Render image
 cam.Render(scn);
 cam.SaveBitmap("spheres.bmp");
}

