Trees/Intro to counting

Russell Impagliazzo and Miles Jones

Thanks to Janine Tiefenbruck
http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 29, 2016

Equivalence between rooted and unrooted trees

Goal (2): There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

Using the subgoals to achieve the goal:

Root(T : unrooted tree with n nodes)

1. If $n=1$, let the only vertex v be the root, set $h(v):=0$, and return.
2. Find a vertex v of degree 1 in T, and let u be its only neighbor.
3. $\operatorname{Root}(T-\{v\})$.
4. Set $p(v):=u$ and $h(v):=h(u)+1$.

Example

vertex	A	B	C	D	E	F	
degree	1		3	1	3	1	1

What do we mean by counting?

How many arrangements or combinations of objects are there of a given form?
How many of these have a certain property?

Why is counting important?

For computer scientists:

- Hardware: How many ways are there to arrange components on a chip?
- Algorithms: How long is this loop going to take? How many times does it run?
- Security: How many passwords are there?
- Memory: How many bits of memory should be allocated to store an object?

Miis

In some video games, each player can create a character with custom facial features.

How many distinct characters are possible?

Miis

In some video games, each player can create a character with custom facial features. How many distinct characters are possible?

Considering only these 12 hairstyles and 8 hair colors, how many different characters are possible?

A. $8+12=20$
B. $8^{*} 12=96$
C. $8^{12}=68719476736$
D. $12^{8}=429981696$
E. None of the above

Product rule

For any sets, A and $B:|A \times B|=|A||B|$

In our example:
$\begin{array}{ll}A=\{\text { hair styles }\} & |A|=12 \\ B=\{\text { hair colors }\} & |B|=8\end{array}$
$A \times B=\{(s, c): s$ is a hair style and c is a hair color $\}$
$|\mathrm{A} \times \mathrm{B}|=$ the number of possible pairs of hair styles \& hair colors
$=$ the number of different ways to specify a character

Product rule

For any sets, A and $B:|A \times B|=|A||B|$

More generally:

Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_{1} ways to do the first task and for each of these ways of doing the first task, there are n_{2} ways to do the second task, then there are $\mathbf{n}_{1} \mathbf{n}_{\mathbf{2}}$ ways to do the procedure.

Product rule

For any sets, A and $B:|A \times B|=|A||B|$

More generally:
To count the number of pairs of objects:

* Count the number of choices for selecting the first object.
* Count the number of choices for selecting the second object.
* Multiply these two counts.

Miis: preset characters

Other than the 96 possible custom Miis, a player can choose one of 10 preset characters.

How many different characters can be chosen?
A. 96
B. 10
C. 106
D. 960
E. None of the above.

Sum rule

For any disjoint sets, A and $B:|A \cup B|=|A|+|B|$

In our example:
$\begin{array}{ll}A=\{\text { custom characters }\} & |A|=96 \\ B=\{\text { preset characters }\} & |B|=10\end{array}$
$B=\{$ preset characters $\} \quad|B|=10$
$A \cup B=\{m: m$ is a character that is either custom or preset $\}$
$|A \cup B|=$ the number of possible characters

Sum rule

For any disjoint sets, A and $B:|A \cup B|=|A|+|B|$

More generally:
If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the set of n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.

Sum rule

For any disjoint sets, A and $B:|A \cup B|=|A|+|B|$

More generally:
To count the number of objects with a given property:

* Divide the set of objects into mutually exclusive (disjoint/nonoverlapping) groups.
* Count each group separately.
* Add up these counts.

Length n binary strings

Select which method lets us count the number of length n binary strings.
A. The product rule.
B. The sum rule.
C. Either rule works.
D. Neither rule works.

Length n binary strings

Select which method lets us count the number of length n binary strings.
A. The product rule.
B. The sum rule.
C. Either rule works.
D. Neither rule works.

Select first bit, then second, then third
$\{0 \ldots\} \cup\{1 \ldots\}$ gives recurrence $N(n)=2 N(n-1), N(0)=1$

Memory: storing length n binary strings

How many binary strings of length n are there?
How many bits does it take to store a length n binary string?

Memory: storing length n binary strings

How many binary strings of length n are there? $\mathbf{2 n}^{\text {n }}$
How many bits does it take to store a ength n binary string? n

General principle: number of bits to store an object is

$$
\left\lceil\log _{2}(\text { number of objects })\right\rceil
$$

Memory: storing integers

Scenario: We want to store a non-negative integer that has at most n digits. How many bits of memory do we need to allocate?
A. n
B. 2^{n}
C. 10^{n}
D. $n^{*} \log _{2} 10$
E. $n^{*} \log _{10} 2$

Ice cream!

At an ice cream parlor, you can choose to have your ice cream in a bowl, cake cone, or sugar cone. There are 20 different flavors available.

How many single-scoop creations are possible?
A. 20
B. 23
C. 60
D. 120
E. None of the above.

Ice cream!

At an ice cream parlor, you can choose to have your ice cream in a bowl, cake cone, or sugar cone. There are 20 different flavors available.

You can convert your single-scoop of ice cream to a sundae. Sundaes come with your choice of caramel or hot-fudge. Whipped cream and a cherry are options. How many desserts are possible?
A. $20^{*} 3^{*} 2^{*} 2$
B. $20^{*} 3^{*} 2^{*} 2^{*} 2$
C. $20 * 3+20 * 3 * 2 * 2$
D. $20^{*} 3+20^{*} 3^{*} 2^{*} 2^{*} 2$
E. None of the above.

A scheduling problem

In one request, four jobs arrive to a server: J1, J2, J3, J4.
The server starts each job right away, splitting resources among all active ones.
Different jobs take different amounts of time to finish.
How many possible finishing orders are there?
A. 4^{4}
B. $4+4+4+4$
C. $4 * 4$
D. None of the above.

A scheduling problem

In one request, four jobs arrive to a server: $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~J} 4$.
The server starts each job right away, splitting resources among all active ones.
Different jobs take different amounts of time to finish.
How many possible finishing orders are there?
Product rule analysis

Which options are available will depend on first choice; but the number of options will be the same.

- 4 options for which job finishes first.
- Once pick that job, 3 options for which job finishes second.
- Once pick those two, 2 options for which job finishes third.
- Once pick first three jobs, only 1 remains.
$(4)(3)(2)(1)=4!=24$

Permutations

Permutation:

rearrangement / ordering of n distinct objects so that each object appears exactly once

Theorem 1: The number of permutations of n objects is

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

Convention: $0!=1$

Traveling salesperson

Planning a trip to
New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must start in New York and end in Seattle.

How many ways can the trip be arranged?
A. $7!$
B. 2^{7}
C. None of the above.

Traveling salesperson

Planning a trip toNew YorkChicagoBaltimoreLos AngelesSan DiegoMinneapolisSeattle
Must start in New York and end in Seattle.
Must also visit Los Angeles immediately after San Diego.

Traveling salesperson

Planning a trip toNew YorkChicagoBaltimoreLos AngelesSan DiegoMinneapolisSeattle
Must start in New York and end in Seattle.
Must also visit Los Angeles immediately after San Diego.

Traveling salesperson

Planning a trip to
New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must start in New York and end in Seattle.
Must also visit Los Angeles and San Diego immediately after each other (in any order).

Traveling salesperson

Planning a trip to
New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle
Must start in New York and end in Seattle.
Must also visit Los Angeles and San Diego immediately after each other (in any order).

Break into two disjoint cases:
Case 1: LA before SD 24 arrangements
Case 2: SD before LA 24 arrangements

How many ways can the trip be arranged now?

Traveling salesperson

Planning a trip to
New York
Chicago
Baltimore
Los Angeles wouldn go to Los Angeles, then Chicage,
then N Nal

San Diego
Minneapolis
Seattle
Must start in New York and end in Seattle.
Must also visit Los Angeles and San Diego immediately after each other (in any order).

Traveling salesperson

Planning a trip to

Traveling salesperson

Planning a trip to
New York
Chicago
Baltimore
Los Angeles
San Diego Minneapolis Seattle exactly once and minimizes the distance traveled?

Traveling salesperson

Developing an algorithm which, given a set of cities and distances between them, computes a shortest distance path between all of them is NP-hard (considered intractable, very hard).

Is there any algorithm for this question?
A. No, it's not possible.
B. Yes, it's just very slow.
C. ?

Traveling salesperson

Exhaustive search algorithm

List all possible orderings of the cities.
For each ordering, compute the distance traveled. Choose the ordering with minimum distance.

Seattle
How long does this take?

Traveling salesperson

Exhaustive search algorithm: given \boldsymbol{n} cities and distances between them.

List all possible orderings of the cities.
For each ordering, compute the distance traveled.
O(number of orderings) Choose the ordering with minimum distance.

Seattle
Minneapolis
How long does this take?

Traveling salesperson

Exhaustive search algorithm: given \boldsymbol{n} cities and distances between them.

List all possible orderings of the cities.
For each ordering, compute the distance traveled. O(number of orderings) Choose the ordering with minimum distance.

How long does this take?
A. $\mathrm{O}(\mathrm{n})$
B. $O\left(n^{2}\right)$
C. $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$
D. $\mathrm{O}(\mathrm{n}!)$
E. None of the above.

Traveling salesperson

Exhaustive search algorithm: given \boldsymbol{n} cities and distances between them.

List all possible orderings of the cities.
For each ordering, compute the distance traveled. O(number of orderings) Choose the ordering with minimum distance.

How long does this take?
A. $\mathrm{O}(\mathrm{n})$
B. $O\left(n^{2}\right)$
C. $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$
D. $\mathrm{O}(\mathrm{n}!)$
E. None of the above.

Moral: counting gives upper bound on algorithm runtime.

Bipartite Graphs

A complete bipartite graph is an undirected graph whose vertex set is partitioned into two sets $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that

- there is an edge between each vertex in V_{1} and each vertex in V_{2}
- there are no edges both of whose endpoints are in V_{1}
- there are no edges both of whose endpoints are in V_{2}

Is this graph Hamiltonian?
A. Yes
B. No

Bipartite Graphs

Rosen p. 658

A complete bipartite graph is an undirected graph whose vertex set is partitioned into two sets $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that

- there is an edge between each vertex in V_{1} and each vertex in V_{2}
- there are no edges both of whose endpoints are in V_{1}
- there are no edges both of whose endpoints are in V_{2}

Is every complete
bipartite graph Hamiltonian?
A. Yes
B. No

Bipartite Graphs

Claim: any complete bipartite graph with $\left|\mathrm{V}_{1}\right|=k,\left|\mathrm{~V}_{2}\right|=\mathrm{k}+1$ is Hamiltonian.
How many Hamiltonian tours can we find?
A. k
B. $k(k+1)$
C. $k!(k+1)$!
D. $(k+1)$!
E. None of the above.

Bipartite Graphs

Claim: any complete bipartite graph with $\left|\mathrm{V}_{1}\right|=k,\left|\mathrm{~V}_{2}\right|=\mathrm{k}+1$ is Hamiltonian.
How many Hamiltonian tours can we find?
A. k
B. $k(k+1)$
C. $k!(k+1)$!
D. $(k+1)$!
E. None of the above.

When product rule fails

How many Hamiltonian tours can we find?
A. 5 !
B. $5!4$!
C. ?

When product rule fails

Tree Diagrams

Which Hamiltonian tours start at e?
List all possible next moves.
Then count leaves.

When sum rule fails

Let $A=\{$ people who know Java $\}$ and $B=\{$ people who know $C\}$
How many people know Java or C (or both)?
A. $|A|+|B|$
B. $|A||B|$
C. $|A|^{|B|}$
D. $|B|^{|A|}$
E. None of the above.

When sum rule fails

Let $A=\{$ people who know Java $\}$ and $B=\{$ people who know $C\}$
\# people who know Java or C = \# people who know Java

When sum rule fails

Let $A=\{$ people who know Java $\}$ and $B=\{$ people who know $C\}$
\# people who know Java or C = \# people who know Java + \# people who know C

When sum rule fails

Let $A=\{$ people who know Java $\}$ and $B=\{$ people who know $C\}$
\# people who know Java or C = \# people who know Java

+ \# people who know C
- \# people who know both

Inclusion-Exclusion principle

Let $A=\{$ people who know Java $\}$ and $B=\{$ people who know $C\}$

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Inclusion-Exclusion for three sets

Rosen p. 392-394
$|A \cup B \cup C|=?$

Inclusion-Exclusion for three sets

Rosen p. 392-394

$|A \cup B \cup C|=$?

Inclusion-Exclusion for three sets

Rosen p. 392-394

$|A \cup B \cup C|=$?

Inclusion-Exclusion for three sets

Rosen p. 392-394

$|A \cup B \cup C|=$?

Inclusion-Exclusion for three sets

Rosen p. 392-394

$|A \cup B \cup C|=$?

Inclusion-Exclusion for three sets

Rosen p. 392-394

Rosen p. 392-394

$|A \cup B \cup C|=?$

Inclusion-Exclusion for three sets

Rosen p. 392-394
$|A \cup B \cup C|=?$

Inclusion-Exclusion for three sets

Rosen p. 392-394

$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$

Inclusion-Exclusion principle

Rosen p. 556

If $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots A_{n}\right| & =\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& -\cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Templates

How many four-letter strings have one vowel and three consonants? There are 5 vowels: AEIOU and 21 consonants: BCDFGHJKLMNPQRSTVWXYZ.
A. $5^{*} 21^{3}$
B. 26^{4}
C. $5+52$
D. None of the above.

Templates

How many four-letter strings have one vowel and three consonants?
There are 5 vowels: AEIOU and 21 consonants: BCDFGHJKLMNPQRSTVWXYZ.

Template	\# Matching
VCCC	$5 * 21 * 21 * 21$
CVCC	$21 * 5 * 21 * 21$
CCVC	$21 * 21 * 5 * 21$
CCCV	$21 * 21 * 21 * 5$

Total: $4^{*} 5^{*} 21^{3}$

Counting with categories

If $A=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$ and all X_{i}, X_{j} disjoint and all X_{i} have same size, then

$$
\left|X_{i}\right|=|A| / n
$$

More generally:

There are n / d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, d of the n ways give the same result as w did.

Counting with categories

If $A=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$ and all X_{i}, X_{j} disjoint and all X_{i} have same size, then

$$
\left|X_{i}\right|=|A| / n
$$

More generally:

There are n / d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, d of the n ways give the same result as w did.

Counting with categories

If $A=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$ and all X_{i}, X_{j} disjoint and all X_{i} have same size, then

$$
\left|X_{i}\right|=|A| / n
$$

Or in other words,

If objects are partitioned into categories of equal size, and we want to think of different objects as being the same if they are in the same category, then
\# categories = (\# objects) / (size of each category)

Ice cream!

An ice cream parlor has n different flavors available. How many ways are there to order a two-scoop ice cream cone (where you specify which scoop goes on bottom and which on top, and the two flavors must be different)?
A. n^{2}
B. n !
C. $n(n-1)$
D. $2 n$
E. None of the above.

Ice cream!

An ice cream parlor has n different flavors available.
How can we use our earlier answer to decide the number of cones, if we count two cones as the same if they have the same two flavors (even if they're in opposite order)?
A. Double the previous answer.
B. Divide the previous answer by 2 .
C. Square the previous answer.
D. Keep the previous answer.
E. None of the above.

Ice cream!

An ice cream parlor has n different flavors available.
How can we use our earlier answer to decide the number of cones, if we count two cones as the same if they have the same two flavors (even if they're in opposite order)?

Objects:
Categories:
Size of each category:
\# categories = (\# objects) / (size of each category)

Ice cream!

An ice cream parlor has n different flavors available.
How can we use our earlier answer to decide the number of cones, if we count two cones as the same if they have the same two flavors (even if they're in opposite order)?

Objects: cones
Categories: flavor pairs (regardless of order) Size of each category:
\# categories = (\# objects) / (size of each category)

Ice cream!

An ice cream parlor has n different flavors available. How can we use our earlier answer to decide the number of cones, if we count two cones as the same if they have the same two flavors (even if they're in opposite order)?

Objects: cones $\quad \mathrm{n}(\mathrm{n}-1)$
Categories: flavor pairs (regardless of order) Size of each category: 2

\# categories $=(\mathrm{n})(\mathrm{n}-1) / 2$

Object Symmetries

How many different colored triangles can we create by tying these three pipe cleaners end-to-end?
A. 3 !
B. 2^{3}
C. 3^{2}
D. 1
E. None of the above.

Object Symmetries

How many different colored triangles can we create by tying these three pipe cleaners end-to-end?

Objects: all different colored triangles
Categories: physical colored triangles (two triangles are the same if they can be rotated and/or flipped to look alike) Size of each category:
\# categories = (\# objects) / (size of each category)

Object Symmetries

How many different colored triangles can we create by tying these three pipe cleaners end-to-end?

Objects: all different colored triangles 3!
Categories: physical colored triangles (two triangles are the same if they can be rotated and/or flipped to look alike)
Size of each category: (3)(2) three possible rotations, two possible flips

$$
\text { \# categories }=(\# \text { objects }) /(\text { size of each category })=6 / 6=1
$$

