How to use strong induction to prove correctness
of recursive algorithms

April 12, 2015

1 Format of an induction proof

Remember that the principle of induction says that if p(a) AVE[p(k) — p(k+1)],
then Vk € Z,n > a — p(k). Here, p(k) can be any statement about the natural
number k that could be either true or false. It could be a numerical formula,
such as “The sum of the first k odd numbers is k2”7 or a statement about a
process: “After the first k passes of BubbleSort, the last k positions contain the
k largest elements”.

In other words, if a process evolves in discrete steps, it starts out having a
property, and in no one step does the property change from true to false, then
it will always have the property after any number of steps.

Actually, though, if k + 1 were the first integer where p(k + 1) failed to be
true, we would know something a lot stronger than just p(k) but not p(k+1). It
would also be true that p(0),p(1),..p(k — 1), p(k) all were true, but still p(k+1)
would be false. So it suffices to show that this cannot occur to show that p(k)
always holds.

In other words, if p(a), and if for all &k > a, p(a) Ap(a+1)...Ap(k) — p(k+1).
then p(k) holds for every integer £ > 0. Strong induction (as this is called) is
more complicated, but actually easier to use than plain induction, because the
induction hypothesis we’re allowed is much stronger, which makes it easier to
prove the implication.

Thus the format of an induction proof:

e Part 1: We prove a base case, p(a). This is usually easy, but it is essential
for a correct argument.

e Part 2: We prove the induction step. In the induction step, we prove
Wk[(Va < K < kp(k')) = p(k +1)].

Since we need to prove this universal statement, we are proving it for an
abstract variable k, not for a particular value of k. Thus, we let k& be an
arbitrary non-negative integer, and our sub-goal becomes: p(k) — p(k+1).

To prove such an implication, we assume Va < k¥’ < k, p(k’), and and our
sub-goal is now p(k 4+ 1). The assumption Va < k' < k,p(k’) is called
the strong induction hypothesis. Note that it includes ¥’ = k, so p(k) is a
special case. That means that any proof by induction is also a proof by
strong induction (although not vice versa). While you're getting used to
doing proofs by induction, it’s a good habit to explicitly state and label
both the induction hypothesis and the intended goal, p(k + 1). Once we
get used to induction, we merge steps.

Sometimes it is easier to do a change of variables and call k¥ + 1 “k”
which makes k “k — 17. Then the strong induction hypothesis becomes
: Va < K < k—1,p(k') and in the induction step we are proving p(k).
These are logically equivalent, and it is a matter of preference which you
like better for a particular problem. As long as you are consistent and
clear in which version you are using, either is correct.

e Part 3: State what induction then allows us to conclude: “Since we have
shown that the property (equation , inequality, relationship, predicate as
appropriate) is true for k = a in the base case, and since we have shown
in the induction step that if the property is true for all a < k¥’ < k then
it is also true for k + 1, by the principle of induction we have shown that
the property is true for all integers k > a.”

2 Recursive algorithms

Strong induction is the method of choice for analyzing properties of recursive
algorithms. This is because the strong induction hypothesis will essentially tell
us that all recursive calls are correct. Don’t try to mentally unravel the recursive
algorithm beyond one level of recursive calls. Strong induction allows us just to
think about one level of recursion at a time. The reason we use strong induction
is that there might be many sizes of recursive calls on an input of size k. But if
all recursive calls shrink the size or value of the input by exactly one, you can
use plain induction instead (although strong induction is still okay, too.)
Here’s the generic form of a recursive algorithm:

Base case of recursion For small inputs, or some other special cases, the
algorithm will give an answer directly, without making recursive calls.

Defining sub-problems If a base case doesn’t apply, the algorithm defines one
or more “sub-problems”, smaller inputs computed from the main input.

Solving sub-problems The recursive algorithm calls itself on the sub-problems
and saves the recursively computed answer.

Produce Output After solving all the sub-problems, the algorithm then pro-
duces some output based on the input and answers to the sub-problems.

There are many things we want to know about such algorithms. How does
the output depend on the input, and why does it meet the correctness property
in the problem specification? Does the recursion always terminate? How much
total time does the algorithm take?

All of these are about global behavior of the algorithm, properties of the
entire sequence of recursive calls (since each recursive call might itself make
recursive calls, this can be quite complex). But what the recursive structure
gives us is local behavior, what happens at the main recursive call. By using a
strong induction argument, we only need to worry about the level of recursion
that is explicitly given by the algorithm. We let the other levels worry about
themselves, because we’ve handled them “inductively” using the same method.
In particular, we use strong induction so that we do not need to unravel the
recursion. Note that unlike for loop invariants, the induction variable is the
input size, not the time step or level of the recursion.

3 An example algorithm

So far we’ve been very abstract. Let’s translate this to a specific example.
Here’s a very simple algorithm that computes the floor of the log of x. Here,
the command z + y returns the floor of z/y.

RLogRounded (x: positive integer): non-negative integer;

1. IF z =1 return 0
2. L + RLogRounded(z + 2).
3. Return L + 1.

We want to show that for z > 1, the program outputs logox round down
to the nearest integer, RLogRounded(xz) = |log,x|. We do this by strong
induction.

Base case: When z = 1, RLogRounded(1) =0 = |0] = |log1] = |logz].

Strong induction step: Assume RLogRounded(z') = |logy | for all 1 <
2’ <z —1, for some x > 2.

We will show RLogRounded(z) = |log, x].

Since x > 1, RLogRounded(x) = RLogRounded(x =+2)+1 (from lines 2 and
3).

If « is even, this is RLogRounded(z/2) + 1.

Since 1 < z/2 < z, we can apply the strong induction hypothesis with
' = x/2 and see RLogRounded(xz) = RLogRounded(x/2) + 1 = |logy(z/2)] +
1=logyx—1]+1=log,z].

If 2 is odd, this is RLogRounded((x—1)/2)+1. Note that since z is odd, x >
3 and z cannot be a power of 2. Since x is not a power of 2, |log, x| = |logy(x —
1)]. Since z > 3, 1 < (x —1)/2 < =z, so we can apply the strong induction

hypothesis with 2’ = (x —1)/2 and see RLogRounded(x) = RLogRounded((x —
1)/2)+1 = [loga(—1/2)] +1 = [logy(z—1)— 1] +1 = [logg(z—1)] = [log, z]-

Thus, by strong induction on z, RLogRounded(x) = |log, x| for all integers
z > 1.

4 General method

Now let’s abstract what we did above to see what steps we go through in general.

Stating correctness It is important to state what correctness means to the
algorithm carefully. Unlike with loop invariants, this is just making the
problem specification precise. It is not at all creative, just a matter of being
careful. In the above example, correctness is an equation, but sometimes
it is a more complex property, such as producing a sorted list with the
same elements as the input, or deciding whether a string is a palindrome.

The base case Recursive algorithms need to eventually bottom out, otherwise,
they are creating an endless list of recursive calls. The input sizes where
the recursion always bottoms out are those where we prove the statement
as a base case. There can be more than one. Whule we only need one
base case in a strong induction proof, what this is really doing if we have
multiple base cases is dividing up the induction step into cases, ones where
the input is small and the rest when the input is large. If you prefer to
break up the induction step into cases rather than call them seperate base
cases, that is also correct.

Here, the algorithm does not call itself recursively when x = 1, just returns
0. So x =1 is the base case of the induction argument.

We need to show that the program is correct on each base case. There are
two parts to this, for each such case:

1. Use the algorithm description to say what gets returned in the the
base case.

“ When x = 1, RLogRounded(1) = 0"
2. Show that this value satisfies the correctness property.
“0=10] =|logl]| = |logz].”

Strong Induction step In the induction step, we can assume that the algo-
rithm is correct on all smaller inputs. We use this to prove the same thing
for the current input.

We do this in the following steps:

1. State the induction hypothesis: The algorithm is correct on all in-
puts between the base case and one less than the current case. We

also know that the current value is not a base case. The exact for-
malism that this corresponds to will vary according to the problem
specification.
“Assume RLogRounded(z’) = [logy 2’| for all 1 < 2’ < x — 1, for
some x > 2.7

2. Represent what the algorithm returns on the current value in terms
of recursive calls.
“Since > 1, RLogRounded(x) = RLogRounded(x + 2) + 1 (from
lines 2 and 3). If z is even, this is RLogRounded(z/2) + 1.” (Note
that we are breaking it up into cases at this point, because the div
operation is different for the two cases odd and even. The cases come
from cases you need to divide things up into to simulate the steps of
the algorithm).

3. Apply the strong induction hypothesis to replace each recursive call
with the correct answer.
“ Since 1 < /2 < z, we can apply the strong induction hypothesis
with 2’ = x/2 and see RLogRounded(x) = RLogRounded(z/2)+1 =
[log, (2/2)] +17

4. Then we need to use algebra and logic to show that this is the same
as a correct answer for the current input.
“= |logox — 1] +1 = |logg x].” (the last expression being what we
wanted the algorithm to return.)

5. If we broke up the algorithm into cases, we need to repeat the last
three parts for all cases.

6. Summary of induction argument:
Just a reminder that we are finished:

“Thus, by strong induction on z, RLogRounded(x) = |log, x| for all
integers x > 1.7

Strong induction proofs of correctness for recursive algorithms are actually
easier and more direct than loop invariants, because the recursive structure is
telling us what correctness means at all levels. The statement we are proving
is direct from the correctness condition, so doesn’t need to be modified in a
creative way.

