CSE 20 DISCRETE MATH

SPRING 2016

http://cseweb.ucsd.edu/classes/sp16/cse20-ac/

Today's learning goals

- Define and compute the cardinality of a set: Finite sets, countable sets, uncountable sets
- Use functions to compare the sizes of sets
- Determine and prove whether a given binary relation is
 - symmetric
 - antisymmetric
 - reflexive
 - transitive
- Represent equivalence relations as partitions and vice versa
- Define and use the congruence modulo m equivalence relation

Cardinality

Finite sets

Countably infinite sets

Rosen Defn 3 p. 171

|A| = n for some nonnegative int n

 $|A| = |Z^+|$ (informally, can be listed out)

Uncountable sets

Infinite but not in bijection with Z⁺

Cardinality

Rosen p. 172

• Countable sets A is finite or $|A| = |Z^+|$ (informally, can be listed out)

Examples: $\emptyset \quad \{x \in \mathbb{Z} | x^2 = 1\} \quad \mathcal{P}(\{1, 2, 3\}) \quad \mathbb{Z}^+$ and also ...

- the set of odd positive integers
- the set of all integers
- the set of **positive rationals**
- the set of **negative rationals**
- the set of all rationals
- the set of binary strings

Example 1 Example 3 Example 4

Rosen example 5, page 173-174

Cantor's diagonalization argument

Theorem: For every set A, $|A| \neq |\mathcal{P}(A)|$

Cantor's diagonalization argument

Theorem: For every set A, $|A| \neq |\mathcal{P}(A)|$

Proof: (Proof by contradiction)

Assume towards a contradiction that $|A| = |\mathcal{P}(A)|$. By definition, that means there is a **bijection** $A \to \mathcal{P}(A)$.

Cantor's diagonalization argument

Consider the subset D of A defined by, for each a in A:

$$a \in D$$
 iff $a \notin f(a)$

Cantor's diagonalization argument

Consider the subset D of A defined by, for each a in A:

$$a \in D$$
 iff $a \notin f(a)$

Define d to be the pre-image of D in A under f f(d) = DIs d in D?

- If yes, then by definition of D, $d \notin f(d) = D$ a contradiction!
- Else, by definition of $D, \neg(d \notin f(d))$ so $d \in f(D) = D$ a contradiction!

Cardinality

Rosen p. 172

Uncountable sets
Infinite but not in bijection with Z⁺

Examples: the power set of any countably infinite set and also ...

- the set of real numbers
- (0,1)
- (0,1]

Example 5 Example 6 (++) Example 6 (++)

Exercises 33, 34

Cardinality and subsets

Suppose A and B are sets and $A \subseteq B$.

- A. If A is finite then B is finite.
- B. If A is countable then B is uncountable.
- C. If B is infinite then A is finite.
- D. If B is uncountable then A is uncountable.
- E. None of the above.

Size as a relation

Cardinality lets us compare and group sets.

Size as a relation

Cardinality lets us compare and group sets.

Relations, more generally Rosen Sections 9.1, 9.3 (second half), 9.5, 9.6

 Let A, B be sets. Binary relation from A to B is (any) subset of A x B.

Relation on a set A

Rosen pp 576-578

R is subset of A x A. It is called

reflexive iff $\forall a((a,a) \in R)$

symmetric iff $\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R)$

antisymmetric iff $\forall a \forall b ([(a, b) \in R \land (b, a) \in R] \rightarrow a = b)$

transitive iff $\forall a \forall b \forall c ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$

New representation of relations on a set A

 $A = \mathcal{P}(\{1, 2\}) \qquad \qquad X \ R \ Y \text{ iff } X \subseteq Y$

Relation on a set A

R is subset of A x A. It is called

reflexive iff $\forall a((a, a) \in R)$ self loops

symmetric iff $\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R)$ paired arrows

antisymmetric iff $\forall a \forall b ([(a, b) \in R \land (b, a) \in R] \rightarrow a = b)$

transitive iff $\forall a \forall b \forall c ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$ chains collapse

Relation on a set A, more generallyExample $A = \mathcal{P}(\{1, 2\})$ $X \ R \ Y \ \text{iff} \ X \subseteq Y$

Which of the following properties hold for R?

- A. Reflexive, i.e. $\forall a((a,a) \in R)$
- B. Symmetric, i.e. $\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R)$
- C. Antisymmetric, i.e.

 $\forall a \forall b (~[(a,b) \in R \land (b,a) \in R] \rightarrow a = b~)$

D. Transitive, i.e.

 $\forall a \forall b \forall c ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$

E. None of the above.

Relation on a set A, more generallyExample Z $R=\{(x,y): x < y\}$

Which of the following properties hold for R?

- A. Reflexive, i.e. $\forall a((a,a) \in R)$
- B. Symmetric, i.e. $\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R)$
- C. Antisymmetric, i.e. $\forall a \forall b ([(a,b) \in R \land (b,a) \in R] \rightarrow a = b)$
- D. Transitive, i.e. $\forall a \forall b \forall c ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$

E. None of the above.

Rosen Chapter 9

Equivalence relations

Rosen p. 608

Group together "similar" objects

Equivalence relations

Rosen p. 608

Two formulations

A relation R on set S is an **equivalence relation** if it is **reflexive**, **symmetric**, and **transitive**.

x R y iff x and y are "similar"

Partition S into equivalence classes, each of which consists of "similar" elements: collection of disjoint, nonempty subsets that have S as their union

x,y both in A_i iff x and y are "similar"

Equivalence relations on strings

Which of the following binary relations on $\mathcal{P}(\{1,2\})$ are equivalence relations?

- A. $A R_1 B$ iff $A \subseteq B$
- B. $A R_2 B$ iff |A| = |B|
- C. $A R_3 B$ iff A and B are disjoint
- D. More than one of the above
- E. None of the above

How to prove?

Equivalence relations on strings

Which of the following binary relations on {0,1}* are equivalence relations?

- A. $u R_1 v$ iff |u| = |v|
- B. $u R_2 v$ iff the first bit of u is not equal to the first bit of v
- C. $u R_3 v$ iff u is the reverse of v
- D. More than one of the above
- E. None of the above

How to prove?

The example

Rosen p. 240

For a,b in **Z** and m in **Z**⁺ we say **a is congruent to b mod m** iff

i.e.

and in this case, we write

Which of the following is true? A. $5 \equiv 10 \pmod{3}$ B. $5 \equiv 1 \pmod{3}$ C. $5 \equiv 3 \pmod{3}$ D. $5 \equiv -1 \pmod{3}$ E. None of the above.

$$m \mid (a-b)$$
$$\exists q(a-b=qm)$$

 $a \equiv b \pmod{m}$

Rosen p. 240

Claim: Congruence mod m is an equivalence relation

Proof:

Reflexive? Symmetric? Transitive?

What partition of the integers is associated with this equivalence relation?

Next up

Modular arithmetic