Today's learning goals

- Distinguish between polynomial and exponential DTIME
- Define nondeterministic running time
- Analyse an algorithm to determine whether it is in P
- Define the class NP
- Analyse a nondeterministic algorithm to determine whether it is in NP
- List some famous problems in P
- List some famous problems in NP
- State and explain P=NP?
- Define NP-completeness
- Explain the connection between P=NP? and NP-completeness
Announcements

• Final exam review
 • In class on Thursday
 • Evening session Thursday

• CAPE and TA evaluations open

• Final exam study guide + seat assignments on Ted
 • Final Saturday June 4 11:30am-2:29pm PETERSON 108
 • 1 note sheet, may be 5x8, no magnifying glass!
Measuring time

- For a given **algorithm** working on a given **input**, how long do we need to wait for an answer? **Count steps!**

- For a **problem** decided by a given algorithm, how does the running time depend on the input in the worst-case? average-case? **Big-O**

- What's in common among all problems that are **efficiently solvable**? **Time(t(n))**
Time complexity classes

\[\text{TIME}(t(n)) = \{ L \mid L \text{ is decidable by a TM running in } O(t(n)) \} \]

- **Exponential**
 \[\text{EXPTIME} = \bigcup_{k} \text{TIME}(2^{n^k}) \]

- **Polynomial**
 \[P = \bigcup_{k} \text{TIME}(n^k) \]

- **Logarithmic**

May not need to read all of input

Invariant under many models of TMs

Brute-force search

\[\text{UTIME}(n^k) \bigcup \text{TIME}(n^k) \]

for alg w/ 1 tape

for alg w/ 2 tape
Which machine model?

deterministic computation

non-deterministic computation

q_0 (initial)

q_{rej} / q_{acc}

q_{rej}

q_{acc}

q_{acc}

exponential
Time complexity

For M a deterministic decider, its **running time** or **time complexity** is the function \(f: \mathbb{N} \rightarrow \mathbb{R}^+ \) given by
\[
f(n) = \text{maximum number of steps } M \text{ takes before halting, over all inputs of length } n.
\]

For M a **nondeterministic decider**, its **running time** or **time complexity** is the function \(f: \mathbb{N} \rightarrow \mathbb{R}^+ \) given by
\[
f(n) = \text{maximum number of steps } M \text{ takes before halting on any branch of its computation, over all inputs of length } n.
\]
Time complexity classes

\[\text{DTIME}(t(n)) = \{ L \mid L \text{ is decidable by } O(t(n)) \text{ deterministic, single-tape TM} \} \]

\[\text{NTIME}(t(n)) = \{ L \mid L \text{ is decidable by } O(t(n)) \text{ nondeterministic, single-tape TM} \} \]

Is \(\text{DTIME}(n^2) \) a subset of \(\text{DTIME}(n^3) \)?

A. Yes
B. No
C. Not enough information to decide
D. I don’t know
Time complexity classes

\[\text{DTIME} \left(t(n) \right) = \{ L \mid L \text{ is decidable by } O(t(n)) \text{ deterministic, single-tape TM} \} \]

\[\text{NTIME} \left(t(n) \right) = \{ L \mid L \text{ is decidable by } O(t(n)) \text{ nondeterministic, single-tape TM} \} \]

Is \(\text{DTIME}(n^2) \) a subset of \(\text{NTIME}(n^2) \)?

A. Yes
B. No
C. Not enough information to decide
D. I don’t know
Time complexity classes

\(\text{DTIME}(t(n)) = \{ L \mid L \text{ is decidable by } O(t(n)) \}\)
- deterministic, single-tape TM

\(\text{NTIME}(t(n)) = \{ L \mid L \text{ is decidable by } O(t(n)) \}\)
- nondeterministic, single-tape TM

Is \(\text{NTIME}(n^2) \) a subset of \(\text{DTIME}(n^2) \)?
- A. Yes
- B. No
- C. Not enough information to decide
- D. I don’t know
"Feasible" i.e. P

- Can't use nondeterminism
- Can use multiple tapes

Often need to be "more clever" than naïve / brute force approach

Examples

PATH = \{<G,s,t> | G is digraph with n nodes there is path from s to t\}

RELPRIME = \{<x,y> | x and y are relatively prime integers\}

Use Euclidean Algorithm to show in P

L(G) = \{w | w is generated by G\} where G is any CFG

Use Dynamic Programming to show in P
"Verifiable" i.e. NP

- Best known solution is brute-force
- Look for some "certificate" – if had one, could check if it works quickly

\[NP = \bigcup_{k} NTIME(n^k) \]
Examples in NP for graphs

\[\text{HAMPATH} = \{ <G,s,t> \mid G \text{ is digraph with a path from } s \text{ to } t \text{ that goes through every node exactly once} \} \]

\[\text{CLIQUE} = \{ <G,k> \mid G \text{ is an undirected graph with a } k-\text{clique} \} \]

\[\text{VERTEX-COVER} = \{ <G,k> \mid G \text{ is an undirected graph with a } k\text{-node vertex cover} \} \]

Subset of \(k \) nodes s.t. each edge incident with one of them
Examples in NP for graphs

CLIQUE = \{ <G,k> | G is an undirected graph with a k-clique \}

Complete subgraph with k nodes

How many possible k-cliques are there? How long does it take to confirm "clique-ness"?

A. \(O(n^n) \), \(O(n^2) \)
B. \(O(2^n) \), \(O(n) \)
C. \(O(n!) \), \(O(\log n) \)
D. \(O(n) \), \(O(n) \)
E. I don’t know
Examples in NP optimization

TSP = \{ <G,k> \mid G \text{ is complete weighted undirected graph where weight between node } i \text{ and node } j \text{ is } "\text{distance}" \text{ between them; there is a tour of all cities with total distance less than } k \}\}

How many possible tours are there? How long does it take to check the distance of a single tour?
A. $O(n^2), O(n)$
B. $O(2^n), O(n^2)$
C. $O(n^n), O(\log n)$
D. $O(n!), O(n)$
E. I don’t know
Examples in NP for numbers

COMPOSITES = \{ x \mid x \text{ is an integer } > 2 \text{ and is not prime} \}

(Skip this, way smarter algo proves \(\text{P} \))

SUBSET-SUM = \{ <S, t> \mid S = \{x_1, \ldots, x_k\} \text{ and some subset sums to } t \}

\{1, 5, 8, 7, 4\} \quad t = 6

\{1, 5, 8\} \quad \text{sum: } 14 \quad \cancel{X}

\{8, 1, 5, 3\} \quad \text{sum: } 6 \quad \cancel{\text{not cert}}
Examples in NP

SAT = \{ <\varphi> | \varphi \text{ is a satisfiable Boolean formula} \}

Is \(<\varphi>\) in SAT?

A. Yes
B. No
C. Not enough information to decide
D. I don't know
<table>
<thead>
<tr>
<th>Problems in P</th>
<th>Problems in NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Membership in any) CFL</td>
<td>Any problem in P</td>
</tr>
<tr>
<td>PATH (B=5)</td>
<td>HAMPATH</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>CLIQUE</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>VERTEX-COVER</td>
</tr>
<tr>
<td>Addition, multiplication of integers</td>
<td>TSP</td>
</tr>
<tr>
<td>...</td>
<td>SAT</td>
</tr>
</tbody>
</table>

Note: The input size is based on binary representation.
P

CF

Decidable

NP?
Reductions to the rescue

1970s Stephen Cook and Leonid Levin independently and in parallel lay foundations of **NP-completeness**

Intuitively: if an NP-complete problem has a polynomial algorithm, then all NP problems are polynomial time solvable.

A language B is **NP-complete** if it is in NP and every A in NP is polynomial-time reducible to it.

Cook-Levin Theorem: SAT is NP-complete.
Reductions to the rescue

1970s Stephen Cook and Leonid Levin independently and in parallel lay foundations of NP-completeness.

Intuitively: if an NP-complete problem has a polynomial algorithm, then all NP problems are polynomial-time solvable.

A language B is **NP-complete** if it is in NP and every A in NP is polynomial-time reducible to it.

Cook-Levin Theorem: SAT is NP-complete.

What would prove that P = NP?
A. Showing that a problem solvable by brute-force methods has a nondeterministic solution.
B. Showing that there are two distinct NP-complete problems.
C. Finding a polynomial time solution for an NP-complete problem.
D. Proving that an NP-complete problem is not solvable in polynomial time.
E. I don’t know