Interprocedural analyses and
optimizations

Costs of procedure calls

* Up until now, we treated calls conservatively:
— make the flow function for call nodes return top
— start iterative analysis with incoming edge of the CFG

set to top
—-This leads to | esgrperesii Del

 Calls also incur a direct runtime cost
— cost of call, return, argument & result passing, stack
frame maintainance
—-“direct runtime” cost

Addressing costs of procedure calls

¢ Technique 1: try to get rid of calls, using inlining
and other techniques

« Technique 2: interprocedural analysis, for calls
that are left

Inlining

* Replace call with body of callee

e Turn parameter- and result-passing into
assignments
— do copy prop to eliminate copies

* Manage variable scoping correctly
— rename variables where appropriate

Program representation for inlining

« Call graph
— nodes are procedures
— edges are calls, labelled by
invocation counts/frequency

* Hard cases for builing call
graph
— calls to/from external routines
— calls through pointers, function
values, messages
* Where in the compiler should
inlining be performed?

Inlining pros and cons (discussion)

Inlining pros and cons

* Pros
— eliminate overhead of call/return sequence
— eliminate overhead of passing args & returning results
— can optimize callee in context of caller and vice versa

¢ Cons

— can increase compiled code space requirements
— can slow down compilation
— recursion?

« Virtual inlining: simulate inlining during analysis
of caller, but don’t ac

Which calls to inline (discussion)

» What affects the decision as to which calls to
inline?

Which calls to inline

» What affects the decision as to which calls to
inline?
— size of caller and callee (easy to compute size before
inlining, but what about size after inlining?)
— frequency of call (static estimates or dynamic profiles)
— call sites where callee benefits most from optimization
(not clear how to quantify)

— programmer annotations (if so, annotate procedure or
call site? Also, should the compiler really listen to the
programmer?)

Inlining heuristics

« Strategy 1: superficial analysis

— examine source code of callee to estimate space
costs, use this to determine when to inline

—doesn’ t ac c-mliningtoptimizationg o0 s t

* How can we do better?

Inlining heuristics

» Strategy 2: deep analysis
— perform inlining
— perform post-inlining analysis/optimizations

— estimate benefits from opts, and measure code space
after opts

— undo inlining if costs exceed benefits
— better accounts for post-inlining effects
— much more expensive in compile-time

¢ How can we do better?

Inlining heuristics

» Strategy 3: amortized version of 2
[Dean & Chambers 94]
-perform strategy 2: an inl
— record cost/benefit trade-offs in persistent database

-reuse previous cost/ benefi
sites

Inlining heuristics

 Strategy 4: use machine learning techniques

» For example, use genetic algorithms to evolve
heuristics for inlining
— fitness is evaluated on how well the heuristics do on a
set of benchmarks
— cross-populate and mutate heuristics

e Can work surprisingly well to derive various
heuristics for compilers

Another way to remove procedure calls

int f(...) {
if (...) return g(...);

'r;eltum h(i(....), j(..));

Tail call eliminiation

« Tall call: last thing before return is a call
— callee returns, then caller immediately returns

« Can splice out one stack frame creation and
destruction by jumping to callee rather than
calling

—callee reuses caller’s sta

—callee wildl return direct!l
— effect on debugging?

Tail recursion elimination

« If last operation is self-recursive call, what does
tail call elimination do?

Tail recursion elimination

« If last operation is self-recursive call, what does
tail call elimination do?

« Transforms recursion into loop: tail recursion
elimination
— common optimization in compilers for functional
languages
— required by some language specifications, eg
Scheme
— turns stack space usage from O(n) to O(1)

Addressing costs of procedure calls

» Technique 1: try to get rid of calls, using inlining
and other techniques

» Technique 2: interprocedural analysis, for calls
that are left

Interprocedural analysis

« Extend intraprocedural analyses to work across
calls

e Doesn’t increase code s
e But , doesn’t eliminate
call

« And it may not be as effective as inlining at
cutting the “precision

A simple approach (discussion)

o (@
[— /f/\/

/

n

A simple approach

¢ Given call graph and CFGs of procedures,
create a single CFG (control flow super-graph)
by:
— connecting call sites to entry nodes of callees (entries
become merges)
— connecting return nodes of callees back to calls
(returns become splits)

» Cons:
— speed?
— separate compilation?
—i mprecision due to “unreal

Another approach: summaries (discussion)

Code examples for discussion

global a;
global b;

f(p)*(
global a; } p=0;
a:=5;
f(...); 90 {
b:=a+10; a:=5;
f(&a);
b:=a+10;
}

hQ {
a:=5;
f(&b);
b:=a+10;
}

Another approach: summaries

» Compute summary info for each procedure

» Callee summary: summarizes effect/results of
callee procedures for callers
— used to implement the flow function for a call node

» Caller summaries: summarizes context of all
callers for callee procedure
U/H/sed to start analysis of a procedure

fas
)

Examples of summaries

MOD

+ the set of variables possibly modified by a call to a proc
USE

+ the set of variables possibly read by a call to a proc
MOD-BEFORE-USE

+ the set of variables definitely modified before use
LIVE-RESULT

+ whether result may be live in caller

ARGS-MAY-POINT-TO

+ may-point-io infg for formal parameters
RESULT-MAY-POINT-TO

+ may-paint-io info for the resut

CONST-ARGS PURE

+ the constant values of those formals that are constant * & pure. terminating function. without side-sftects
CONST-RESULT

« the constant result of a procedure, if it's a constant

Issues with summaries

s Level of “context” sens

— For example, one summary that summarizes the
entire procedure for all call sites

— Or, one summary for each call site (getting close to
the precision of inlining)
- Or..

* Various levels of captured information
— as small as a single bit
— as large as the whole source code for callee/callers

» How does separate compilation work?

How to compute summaries

¢ Using iterative analysis

« Keep the current solution in a map from procs to
summaries

» Keep a worklist of procedures to process

» Pick a proc from the worklist, compute its
summary using intraprocedural analysis and the
current summaries for all other nodes

« If summary has changed, add callers/callees to
the worklist for callee/caller summaries

How to compute callee summaries

let m: map from proc to computed summary
let worklist: work list of procs

for each proc p in call graph do
m(p):= ?

for each proc p do
worklist.add(p)

while (worklist.empty.not) do

let p := worklist.remove_any;
1/l compute summary using intraproc analysis
/I and current summaries m
let summary := compute_summary(p,m);
if (m(p) . summary)

m(p) := summary;

for each caller c of p

worklist.add(c)

Examples
eLet’s see how this work
eWe' Il use an analysis f

a running example

Protocol checking

52 — .
p— Interface usage rules in
R documentation
Lm . — Order of operations, data access
Windows 700 b - 4 — Resource management

— Incomplete, wordy, not checked

Driver
Development Kit -

B Microseft Office PowsrPoint

Srmeimns E]

T oo s e kg g . Mo PP o .
L

e ok Moo e P

Flearn ol Moo s i

W amctnd v i ol s 6 e sl .
Fossiaet el ot mipecns
[repR——
[P

sdtrugen] [t]

Violated rules) crashes
— Failed runtime checks
— Unreliable software

FSM protocols

» These protocols can often be expressed as
FSMs

* For example: lock protocol

unlock

FSM protocols

 Alphabet of FSM are actions that affect the state
of the FSM

» Often leave error state implicit

» These FSMs can get pretty big for realistic
kernel protocols

FSM protocol checking

¢ Goal: make sure that FSM does not enter error
state

« Lattice:

FSM protocol checking

* Goal: make sure that FSM does not enter error
state

. Lattice: (C, 1,7, £ N u)

’ ’

tu,le
(2 g tutd 0, v)

Lock protocol example

main() { 0 { 90 ¢
90: h(): lock;
f0; if () { }
lock; main();
unlock; } h() {
} } unlock;

PR s e 4—’ K 4)‘/
Lock protocol example o
main(())l{ L?]{ ho: g() { lock; }
AQA?O;’k “)‘" i () { main(); } h({ unlock:}
g o ' cain
™ unlock; IAI:/M
main f g h
Lr Lr i v
v e oy 2 7
{my 4 7o Y e 7
. Ny wiey v
W #
MYy U} 4wy

Yy

Lock protocol example

main() { 0{ g0 { lock; }
90; h(;
f(); if (...) { main(); } h() { unlock; }
lock; }
unlock;

}
main f g h A
o Lot Lt L
u i i y ’ y H—
o 0 o 0 u o o 0o
o0 0 o 0 o | o0 o
o0 0 | <] 0 0 0 o
o 0 o 0 o 0 [}
0 0 o 0 o 0 o u
o 0 o u o 0 []
o u o 0 0 0 [
o o 6o u 0 0 o o

Another lock protocol example

main() { 0 { 901{
[+[0} 90: if(isLocked()) {
f(); if () { unlock;
lock; main(); }
unlock; } else {

} } lock;

}
}

Mo~
Another lock protocol example 1

Another lock protocol example

main() { () g0 {
“0; ((g(): if(i;?.ocke)
s if (...) {main(); } unlock;
lock; } }else { locR!
unlock; }
}
main f] A
) LT Lo
u
o o] o] o] u [}
[} 0 0 0 [} |
[o] | o] o [
et} L) L]

main() { 0 { 0{

q0; 90; if(isLocked()) {
f0; if (...) {main(); } unlock;
lock; } } else { lock; }
unlock; }
}

main f ¢] A
Lor L7 Lo
u H B B B B
o] [} o] [} u o]
0 [0 [0 |
o] [} | [} o] o]
[} 0 0 0 {ul o}
[} 0 0 0 o {ul}
o o {ul} {ul} o o
full {ue} [o o

What went wrong?

What went wrong?

* We merged info from two call sites of g()

» Solution: summaries that keep different contexts
separate

e What is a context?

Approach #1 to context-sensitivity

» Keep information for different call sites separate

« In this case: context is the call site from which
the procedure is called

Example again

L0 Ypmaing ¢ 04 01
Lig0; 1390: if(isLocked()) {
L f(); if .. { main(#} unlock;
lock; } }else { lock; }
unlock; }
}
main f g

Example again

How should we change the example?

(0 ™ main() { 101 90 {
t‘Lg(); 13g0; 14 if(isLocked() { » How should we change our example to break
i , M) tman0i) s olsa{ otk } our context sensitivity strategy?
unlock; (
) Lo ﬁj()}
main f g main() { f0 {) {
;1 Lot ot Lo 0 g, if(isLocked()) {
N 0; if ()4 unlock;
LM VA L L .
Lo) lock; main(); }
! thw 7 unlock; } else {
" thu L } } lock;
L2 L o " }
AR } }
s Ll oM
L0 u y
Lé a w
Answer In general
« Our first attempt was to make the context be the
immediate call site
mair;(())_{ f(){ho_ h0 {90} * Previous example shows that we may need 2
0; YT { levels of the stack
IL?r?Ilt(Jck) main(); "(is'ﬁ'gﬁg_(»(— the context for an analysis of function f is: call site L,
} ' } } ' where f was called from AND call siteL,wher e f’
else { caller was called from
lock;

}
}

» Can generalize to k levels
— k-length call strings approach of Sharir and Pnueli
-Shi veC@FAs k

Approach #2 to context-sensitivity

Approach #2 to context-sensitivity

» Use dataflow information at call site as the
context, not the call site itself

Using dataflow info as context

main() { 101 90{ 44,0}
q0; 90; if(isLocked()) {
s if (...) {main(); } unlock;
lock; } } else { lock; }
unlock;
}
main f g
L7 Lt L1
WM VA L L
¥ Mmou
" “mou L
1 . @ o 1l
. Moa
» oy L m
e l:O\M,P =

F(t)) v F““)

Transfer functions

« Our pairs of summaries look like functions from
input information to output information

* We call these transfer functions

» Complete transfer functions
— contain entries for all possible incoming dataflow
information
* Partial transfer functions

— contain only some entries, and continually refine
during analysis

Top-down vs. bottom-up

*We’ ve al ways run our i
down: from main, down into procs

« For data-based context sensitivity, can also run
the analysis bottom-up
— analyze a proc in all possibly contexts
— if domain is distributive, only need to analyze
singleton sets

Bottom-up example

main() { f0{ {
[*[0} 90 if(isLocked()) {
() if (..) {main(); } unlock;
lock; } } else { lock; }
unlock;
main f g
“oun ? ? ?
Lo : '

u

—

! |
\ [

0

<
—
(—
- c
o c
(o]

[N
Iu!{e} 5

<
o

Top-down vs. bottom-up

Top-down vs. bottom-up

* What are the tradeoffs?

* What are the tradeoffs?

— In top-down, only analyze procs in the context that
occur during analysis, whereas in bottom-up, may do
useless work analyzing proc in a data context never
used during analysis

— However, top-down requires analyzing a given
function at several points in time that are far away
from each other. 1 f the
this will lead to unnecessary swapping. On the other
hand, can do bottom-up as one pass over the call-
graph, one SCC at a time. Once a proc is analyzed, it
never needs to be reloaded in memory.

— top-down better suited for infinite domains

e n

In class exercise

In class exercise

main main f
main() { L T L main() { i r L T
L1 O L1 fO)
} } u A
0 { f0{
if(Unlocked()) { if(Unlocked()) {
lock; lock;
L2: f(Q; L2: f();
}else { }else {
unlock; unlock;
} }
} }
In class exercise Reps Horwitz and Sagiv 95 (RHS)
main » Another approach to context-sensitive
maing { {1 L interprocedural analysis
L1 0
} u H
. RN u .
0 i(f(unlocked()){ °o° | » Express the problem as a graph reachability
lock; 0 o u, uer
L2: f(Q;) o u,l q y
}else {
unlock; o u ul

}
}

» Works for distributive problems

10

Reps Horwitz and Sagiv 95 (RHS)

main() { mnle 90 {
90; ot if(isLocked()) {
f0; unlock;

lock; }else {
unlock; lock;
.

—

Reps Horwitz and Sagiv 95 (RHS) LL_/

wfe (, am Le

main() { 90 {
[+[0} if(isLocked()) {
10 unlock;
lock; < }else {

unlock; lock;

}
y

}
e
LA N
W‘:) main(); £ (,X, (6 G)\)'l)l
e } (I)

2

Reps Horwitz and Sagiv 95 (RHS)

main() { R
a0 > if(isLocked() {
0 unlock;
lock; Yelse {
unlock; lock;

} }

L= (i L);\ E'(-L

Procedure specialization

« Interprocedural analysis is great for callers
 But for the callee, information is still merged
main() { T\,P,.v{(‘) = Toype- 4{@)

X = new A(...); -
/I g too large to inline
y = x.g0; greearg

y10; AN
y =x.90; } '
y.£0;

I/ but want to inline f
fx@A){ ...}
fx@B){...}

X = new B(...);
y:=x.9();
y-f0;

Procedure specialization

« Specialize g for each dataflow information

*“ln between” i ndensitveintgproand c
main() { 91(%) {
X = new A(...); x.f(); // can now inline
y=xg 40; I/ ots of code
y.f0); return x;
X = new A(...); 92(x) {
y=xg 10 x.f(); // can now inline
y.f0); /I lots of code
return Xx;
X 1= new B(...); }
y=xg 50
y.f0); /I but want to inline f
} fx@A){ ...}
fx@B){...}

Recap using pictures

A0 B0 { Co{
call D call D call D
} } }
DO {

11

Inlining

A0 { B0 { CO{ A0 { B0 { Co{

call D call D call D

L]

} } }
DO {
-—
}

Context-insensitive summary

A0 { B0 { CO{ A0 { B0 { c0{
call D call D call D
L]
} } } }
DO {
L caller summary
) ’ callee summary

Context sensitive summary

Procedure Specialization

A0 { B0 { CcO{ A0 { BO{ CcO{ A0 { B(O{ CO{
call D call D callD call D' call D callD call D call D call D
L] -_— - | | ---aEmD | ~aED | G—] L] -_— -_—
} } }) } T } } }
DO { D0 {
-_— [-—
} : }
context sensitive
summary
Comparison Comparison
Caller precision | Callee precision Code bloat Caller precision | Callee precision code bloat
Inlining Inlining J |, because J , because contexts| L may be large
contexts are are kept separate if we want to
kept separate get the best
context-insensitive precision
interproc contextinsensitive | K | pecause K, because contexts| J none
interproc contexts are are merged
Context sensitive merged
interproc it
P Context sensitive | J pecause of | K, because contexts| J none
interproc context are still merged
—— sensitive when optimizing
Specialization summaries callees

Specialization J , contexts are

kept separate

J , contexts are kept
separate

K some, less
than inlining

12

Summary on how to optimize function calls

Inlining
Tail call optimizations

Interprocedural analysis using summaries
— context sensitive
— context insensitive

Specialization

Cutting edge research

» Making interprocedural analysis scalable

 Optimizing first order function calls

» Making inlining effective in the presence of
dynamic dispatching and class loading

13

