
CSE 190 ð Lecture 11
Data Mining and Predictive Analytics

Text Mining

Assignment 2 ð halfway milestone!

Administrivia

Å Midterms will be returned next week

Å HW2 is here (and still will be after class)

Å One bonus mark!

Interpretation of linear models

I tried rounding my ratings to integers but

it didnõt help?

Q: Why not?

Prediction tasks involving text

What kind of quantities can we

model, and what kind of prediction

tasks can we solve using text?

Prediction tasks involving text

Does this

article have a

positive or

negative

sentiment

about the

subject being

discussed?

Prediction tasks involving text

What is the category/subject/topic of

this article?

Prediction tasks involving text

Which of these

articles are

relevant to my

interests?

Prediction tasks involving text

Find me articles similar to this one

related

articles

Prediction tasks involving text

Which of these reviews am I most likely

to agree with or find helpful?

Prediction tasks involving text

Which of these sentences best

summarizes peopleõs opinions?

Prediction tasks involving text

ôPartridge in a Pear Treeõ, brewed by ôThe Brueryõ

Dark brown with a light tan head, minimal lace and low

retention. Excellent aroma of dark fruit, plum, raisin and

red grape with light vanilla, oak, caramel and toffee.

Medium thick body with low carbonation. Flavor has

strong brown sugar and molasses from the start over

bready yeast and a dark fruit and plum finish. Minimal

alcohol presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

Which sentences refer to which aspect

of the product?

Today

Using text to solve predictive tasks
Å How to represent documents using features?

Å Is text structured or unstructured?

Å Does structure actually help us?

Å How to account for the fact that most words may not

convey much information?

Å How can we find low -dimensional structure in text?

CSE 190 ð Lecture 11
Data Mining and Predictive Analytics

Bag-of-words models

Feature vectors from text

Weõd like a fixed-dimensional

representation of documents, i.e., weõd like

to describe them using feature vectors

This will allow us to compare documents,

and associate weights with particular

features to solve predictive tasks etc. (i.e.,

the kind of things weõve been doing every

week)

Feature vectors from text

F_text = [150, 0, 0, 0, 0, 0, ê , 0]

a aardvark zoetrope

Option 1: just count how many times

each word appears in each document

Feature vectors from text

Option 1: just count how many times

each word appears in each document

Dark brown with a light tan head, minimal

lace and low retention. Excellent aroma of

dark fruit, plum, raisin and red grape with

light vanilla, oak, caramel and toffee. Medium

thick body with low carbonation. Flavor has

strong brown sugar and molasses from the

start over bready yeast and a dark fruit and

plum finish. Minimal alcohol presence.

Actually, this is a nice quad.

yeast and minimal red body thick light a

Flavor sugar strong quad. grape over is

molasses lace the low and caramel fruit

Minimal start and toffee. dark plum, dark

brown Actually, alcohol Dark oak, nice vanilla,

has brown of a with presence. light

carbonation. bready from retention. with

finish. with and this and plum and head, fruit,

low a Excellent raisin aroma Medium tan

These two documents have exactly the same representation

in this model, i.e., weõre completely ignoring syntax.

This is called a òbag-of-wordsó model.

Feature vectors from text

Option 1: just count how many times

each word appears in each document

Weõve already seen some (potential)

problems with this type of representation

in week 3 (dimensionality reduction), but

letõs see what we can do to get it working

Feature vectors from text

50,000 reviews are available on :

http:// jmcauley.ucsd.edu/cse190/data/beer/beer_50000.json

(see course webpage, from week 1)

Code on:

http://jmcauley.ucsd.edu/cse190/code/week6.py

http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse190/code/week6.py

Feature vectors from text

Q1: How many words are there?

wordCount = defaultdict (int)

for d in data:

 for w in d[óreview/textô].split():

 wordCount [w] += 1

print len (wordCount)

A: 150,009 (too many!)

Feature vectors from text

2: What if we remove

capitalization/punctuation?

wordCount = defaultdict (int)

punctuation = set(string.punctuation)

for d in data:

 for w in d['review/text'].split():

 w = ''.join([c for c in w.lower () if not c in punctuation])

 wordCount [w] += 1

print len (wordCount)

A: 74,271 (still too many!)

Feature vectors from text

3: What if we merge different

inflections of words?

drinks Ą drink

drinking Ą drink

drinker Ą drink

argue Ą argu

arguing Ą argu

argues Ą argu

arguing Ą argu

argus Ą argu

drinks Ą drink

drinking Ą drink

drinker Ą drink

argue Ą argu

arguing Ą argu

argues Ą argu

arguing Ą argu

argus Ą argu

Feature vectors from text

3: What if we merge different

inflections of words?

This process is called òstemmingó

ÅThe first stemmer was created by

Julie Beth Lovins (in 1968!!)

ÅThe most popular stemmer was

created by Martin Porter in 1980

Feature vectors from text

3: What if we merge different

inflections of words?
The algorithm is (fairly) simple but

depends on a huge number of rules

http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html

Feature vectors from text

3: What if we merge different

inflections of words?
wordCount = defaultdict (int)

punctuation = set(string.punctuation)

stemmer = nltk.stem.porter.PorterStemmer ()

for d in data:

 for w in d['review/text'].split():

 w = ''.join([c for c in w.lower () if not c in punctuation])

 w = stemmer.stem (w)

 wordCount [w] += 1

print len (wordCount)

A: 59,531 (still too manyê)

Feature vectors from text

3: What if we merge different

inflections of words?

ÅStemming is critical for retrieval-type applications

(e.g. we want Google to return pages with the word

òcató when we search for òcatsó)

ÅPersonally I tend not to use it for predictive tasks.

Words like òwasteó and òwastedó may have different

meanings (in beer reviews), and weõre throwing that

away by stemming

Feature vectors from text

4: Just discard extremely rare wordsê

counts = [(wordCount [w], w) for w in wordCount]

counts.sort ()

counts.reverse ()

words = [x[1] for x in counts[:1000]]

ÅPretty unsatisfying but at least we

can get to some inference now!

Feature vectors from text

Letõs do some inference!

Problem 1: Sentiment analysis

Letõs build a predictor of the form:

using a model based on linear regression:

Code: http:// jmcauley.ucsd.edu/cse190/code/week6.py

http://jmcauley.ucsd.edu/cse255/code/lecture6.py
http://jmcauley.ucsd.edu/cse255/code/lecture6.py

Feature vectors from text

What do the parameters look like?

Feature vectors from text

Why might parameters associated with

òandó, òofó, etc. have non-zero values?

Å Maybe they have meaning, in that they might frequently

appear slightly more often in positive/negative phrases

Å Or maybe weõre just measuring the length of the reviewê

How to fix this (and is it a problem)?

1) Add the length of the review to our feature vector

2) Remove stopwords

Feature vectors from text

Removing stopwords:

from nltk.corpus import stopwords

stopwords.words (ñenglish ò)

[' i ', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',

'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself',

'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them',

'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this',

'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been',

'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing',

'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until',

'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between',

'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to',

'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again',

'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why',

'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other',

'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than',

'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']

Feature vectors from text

Why remove stopwords?

some (potentially inconsistent) reasons:

ÅThey convey little information, but are a substantial fraction of

the corpus, so we can reduce our corpus size by ignoring them

ÅThey do convey information, but only by being correlated by a

feature that we donõt want in our model

ÅThey make it more difficult to reason about which features are

informative (e.g. they might make a model harder to visualize)

ÅWeõre confounding their importance with that of phrases they

appear in (e.g. words like òThe Matrixó, òThe Dark Nightó, òThe

Hobbitó might predict that an article is about movies)

so use n-grams!

Feature vectors from text

We can build a richer

predictor by using n-grams

e.g. òMedium thick body with low carbonation .ò

unigrams: [ñmediumò, ñthickò, ñbodyò, ñwithò, ñlowò, ñcarbonationò]

bigrams: [ñmedium thickò, ñthick bodyò, ñbody withò, ñwith lowò, ñlow

carbonationò]

trigrams: [ñmedium thick bodyò, ñthick body withò, ñbody with lowò,

ñwith low carbonation ò]

etc.

Feature vectors from text

ÅFixes some of the issues associated with using a bag-of-

words model ð namely we recover some basic syntax ð e.g.

ògoodó and ònot goodó will have different weights

associated with them in a sentiment model

ÅIncreases the dictionary size by a lot, and increases the

sparsity in the dictionary even further

ÅWe might end up double (or triple -)-counting some features

(e.g. weõll predict that òAdam Sandleró, òAdamó, and

òSandleró are associated with negative ratings, even though

theyõre all referring to the same concept)

We can build a richer

predictor by using n-grams

Feature vectors from text

ÅThis last problem (that of double counting) is bigger than it

seems: Weõre massively increasing the number of features,

but possibly increasing the number of informative features

only slightly

ÅSo, for a fixed -length representation (e.g. 1000 most-

common words vs. 1000 most-common words+bigrams) the

bigram model will quite possibly perform worse than the

unigram model

We can build a richer

predictor by using n-grams

(homework exercise? ð I donõt know the outcome!)

Feature vectors from text

Other prediction tasks:

Problem 2: Multiclass classification

Letõs build a predictor of the form:

(or even f(text) Ą {1 star, 2 star, 3 star, 4 star, 5 star})

using a probabilistic classifier:

Feature vectors from text

Recall: multinomial distributions

Want:

When there were two classes, we used a sigmoid function to

ensure that probabilities would sum to 1:

Feature vectors from text

Recall: multinomial distributions

With many classes, we can use the same idea, by

exponentiating linear predictors and normalizing :

Each class has its own set of parameters

We can optimize this model exactly as we did for logistic

regression, i.e., by computing the (log) likelihood and fitting

parameters to maximize it

