
CSE 190 ð Lecture 11 
Data Mining and Predictive Analytics 

Text Mining 

 



Assignment 2 ð halfway milestone! 



Administrivia 

Å Midterms will be returned next week  

Å HW2 is here (and still will be after class) 

Å One bonus mark! 



Interpretation of linear models 

I tried rounding my ratings to integers but 

it didnõt help? 

Q: Why not? 



Prediction tasks involving text 

What kind of quantities can we 

model, and what kind of prediction 

tasks can we solve using text?  



Prediction tasks involving text 

Does this 

article have a 

positive or 

negative 

sentiment 

about the 

subject being 

discussed? 



Prediction tasks involving text 

What is the category/subject/topic of 

this article? 



Prediction tasks involving text 

Which of these 

articles are 

relevant to my 

interests? 



Prediction tasks involving text 

Find me articles similar to this one 

related 

articles 



Prediction tasks involving text 

Which of these reviews am I most likely 

to agree with or find helpful?  



Prediction tasks involving text 

Which of these sentences best 

summarizes peopleõs opinions? 



Prediction tasks involving text 

ôPartridge in a Pear Treeõ, brewed by ôThe Brueryõ 

 

Dark brown with a light tan head, minimal lace and low 

retention. Excellent aroma of dark fruit, plum, raisin and 

red grape with light vanilla, oak, caramel and toffee. 

Medium thick body with low carbonation.  Flavor has 

strong brown sugar and molasses from the start over 

bready yeast and a dark fruit and plum finish. Minimal 

alcohol presence. Actually, this is a nice quad. 

 

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4 

Which sentences refer to which aspect 

of the product?  



Today 

Using text to solve predictive tasks 
Å How to represent documents  using features? 

Å Is text structured  or unstructured?  

Å Does structure actually help us? 

Å How to account for the fact that most words may not 

convey much information? 

Å How can we find low -dimensional  structure in text? 



CSE 190 ð Lecture 11 
Data Mining and Predictive Analytics 

Bag-of-words models 

 



Feature vectors from text 

Weõd like a fixed-dimensional 

representation of documents, i.e., weõd like 

to describe them using feature vectors  

 

This will allow us to compare documents, 

and associate weights with particular 

features to solve predictive tasks etc. (i.e., 

the kind of things weõve been doing every 

week) 



Feature vectors from text 

F_text = [150, 0, 0, 0, 0, 0, ê , 0] 

a aardvark zoetrope 

Option 1:  just count how many times 

each word appears in each document 



Feature vectors from text 

Option 1:  just count how many times 

each word appears in each document 
 

Dark brown with a light tan head, minimal 

lace and low retention. Excellent aroma of 

dark fruit, plum, raisin and red grape with 

light vanilla, oak, caramel and toffee. Medium 

thick body with low carbonation. Flavor has 

strong brown sugar and molasses from the 

start over bready yeast and a dark fruit and 

plum finish. Minimal alcohol presence. 

Actually, this is a nice quad. 

yeast and minimal red body thick light a 

Flavor sugar strong quad. grape over is 

molasses lace the low and caramel fruit 

Minimal start and toffee. dark plum, dark 

brown Actually, alcohol Dark oak, nice vanilla, 

has brown of a with presence. light 

carbonation. bready from retention. with 

finish. with and this and plum and head, fruit, 

low a Excellent raisin aroma Medium tan 

These two documents have exactly  the same representation 

in this model, i.e., weõre completely ignoring  syntax. 

This is called a òbag-of-wordsó model. 



Feature vectors from text 

Option 1:  just count how many times 

each word appears in each document 

 

Weõve already seen some (potential) 

problems with this type of representation 

in week 3 (dimensionality reduction), but 

letõs see what we can do to get it working 



Feature vectors from text 

50,000 reviews are available on : 

http:// jmcauley.ucsd.edu/cse190/data/beer/beer_50000.json 

(see course webpage, from week 1) 

 

Code on: 

http://jmcauley.ucsd.edu/cse190/code/week6.py 

http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse190/code/week6.py


Feature vectors from text 

Q1: How many words are there? 

wordCount  = defaultdict ( int )  

for d in data:  

  for w in d[óreview/textô].split(): 

    wordCount [w] += 1  

 

print len ( wordCount )  

A: 150,009 (too many!) 



Feature vectors from text 

2: What if we remove 

capitalization/punctuation?  

wordCount  = defaultdict ( int )  

punctuation = set( string.punctuation )  

for d in data:  

  for w in d['review/text'].split():  

    w = ''.join([c for c in w.lower () if not c in punctuation])  

    wordCount [w] += 1  

 

print len ( wordCount )  

A: 74,271 (still too many!) 



Feature vectors from text 

3: What if we merge different  

inflections of words? 

drinks Ą drink 

drinking Ą drink 

drinker Ą drink 

 

argue Ą argu 

arguing Ą argu 

argues Ą argu 

arguing Ą argu 

argus Ą argu 

drinks Ą drink 

drinking Ą drink 

drinker Ą drink 

 

argue Ą argu 

arguing Ą argu 

argues Ą argu 

arguing Ą argu 

argus Ą argu 



Feature vectors from text 

3: What if we merge different  

inflections of words? 

This process is called òstemmingó 

 

ÅThe first stemmer was created by 

Julie Beth Lovins (in 1968!!) 

ÅThe most popular stemmer was 

created by Martin Porter in 1980 



Feature vectors from text 

3: What if we merge different  

inflections of words? 
The algorithm is (fairly) simple but 

depends on a huge number of rules 

http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html  



Feature vectors from text 

3: What if we merge different  

inflections of words? 
wordCount  = defaultdict ( int )  

punctuation = set( string.punctuation )  

stemmer = nltk.stem.porter.PorterStemmer ()  

for d in data:  

  for w in d['review/text'].split():  

    w = ''.join([c for c in w.lower () if not c in punctuation ])  

    w = stemmer.stem (w)  

    wordCount [w] += 1  

 

print len ( wordCount )  

A: 59,531 (still too manyê) 



Feature vectors from text 

3: What if we merge different  

inflections of words? 

ÅStemming is critical for retrieval-type applications 

(e.g. we want Google to return pages with the word 

òcató when we search for òcatsó) 

ÅPersonally I tend not to use it for predictive tasks. 

Words like òwasteó and òwastedó may have different 

meanings (in beer reviews), and weõre throwing that 

away by stemming 



Feature vectors from text 

4: Just discard extremely rare wordsê 

counts = [( wordCount [w], w) for w in wordCount ]  

counts.sort ()  

counts.reverse ()  

 

words = [x[1] for x in counts[:1000]]  

ÅPretty unsatisfying but at least we 

can get to some inference now! 



Feature vectors from text 

Letõs do some inference! 

 

Problem 1:  Sentiment analysis 
 

Letõs build a predictor of the form: 

 

 

using a model based on linear regression: 

Code: http:// jmcauley.ucsd.edu/cse190/code/week6.py 

http://jmcauley.ucsd.edu/cse255/code/lecture6.py
http://jmcauley.ucsd.edu/cse255/code/lecture6.py


Feature vectors from text 

What do the parameters look like? 



Feature vectors from text 

Why might parameters associated with 

òandó, òofó, etc. have non-zero values? 
 

Å Maybe they have meaning, in that they might frequently 

appear slightly more often in positive/negative phrases  

Å Or maybe weõre just measuring the length of the reviewê 

 

How to fix this (and is it a problem)? 

1) Add the length of the review to our feature vector  

2) Remove stopwords 



Feature vectors from text 

Removing stopwords: 

from nltk.corpus  import stopwords  

stopwords.words (ñenglish ò) 

[' i ', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 

'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 

'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 

'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 

'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 

'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 

'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 

'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 

'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 

'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 

'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 

'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 

'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 

'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']  



Feature vectors from text 

Why remove stopwords? 
 

some (potentially inconsistent) reasons: 

ÅThey convey little information, but are a substantial fraction of 

the corpus, so we can reduce our corpus size by ignoring them 

ÅThey do  convey information, but only by being correlated by a 

feature that we donõt want in our model 

ÅThey make it more difficult to reason about which features are 

informative (e.g. they might make a model harder to visualize) 

ÅWeõre confounding their importance with that of phrases they 

appear in (e.g. words like òThe Matrixó, òThe Dark Nightó, òThe 

Hobbitó might predict that an article is about movies) 

so use n-grams! 



Feature vectors from text 

We can build a richer 

predictor by using n-grams  

e.g. òMedium thick body with low carbonation .ò 

 
unigrams: [ñmediumò, ñthickò, ñbodyò, ñwithò, ñlowò, ñcarbonationò] 

 

bigrams: [ñmedium thickò, ñthick bodyò, ñbody withò, ñwith lowò, ñlow 

carbonationò] 

 

trigrams: [ñmedium thick bodyò, ñthick body withò, ñbody with lowò, 

ñwith low carbonation ò] 

 

etc. 

 



Feature vectors from text 

ÅFixes some of the issues associated with using a bag-of-

words model ð namely we recover some basic syntax  ð e.g. 

ògoodó and ònot goodó will have different weights 

associated with them in a sentiment model 

ÅIncreases the dictionary size  by a lot, and increases the 

sparsity in the dictionary even further  

ÅWe might end up double (or triple -)-counting some features 

(e.g. weõll predict that òAdam Sandleró, òAdamó, and 

òSandleró are associated with negative ratings, even though 

theyõre all referring to the same concept) 

We can build a richer 

predictor by using n-grams  



Feature vectors from text 

ÅThis last problem (that of double counting) is bigger than it 

seems: Weõre massively  increasing the number of features, 

but possibly increasing the number of informative features 

only slightly  

ÅSo, for a fixed -length  representation (e.g. 1000 most-

common words vs. 1000 most-common words+bigrams) the 

bigram model will quite possibly perform worse  than the 

unigram model  

We can build a richer 

predictor by using n-grams  

(homework exercise? ð I donõt know the outcome!) 



Feature vectors from text 

Other prediction tasks: 

 

Problem 2:  Multiclass classification 
 

Letõs build a predictor of the form: 

 

 

(or even f(text) Ą {1 star, 2 star, 3 star, 4 star, 5 star}) 

using a probabilistic classifier: 



Feature vectors from text 

Recall: multinomial distributions 
 

Want: 

 

 

When there were two  classes, we used a sigmoid function to 

ensure that probabilities would sum to 1:  

 

 



Feature vectors from text 

Recall: multinomial distributions 
 

With many  classes, we can use the same idea, by 

exponentiating  linear predictors and normalizing : 

Each class has its own set of parameters 

We can optimize this model exactly as we did for logistic 

regression, i.e., by computing the (log) likelihood and fitting 

parameters to maximize it 


