

CSE 130 : Spring 2015
Programming Languages

Lecture 1: Hello, World!

Ranjit Jhala
UC San Diego

A Programming Language

e Two variables

— %,y Ll: x++;

e Three operations Y=
- x++ (y=0)?L2:L1
- X~ L2: ..

- (x=0)7? L1:L2;

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
... or Windows, Google, Spotify!

5o why study PL ?

“A different language is a
different vision of life”
- Federico Fellini

5o why study PL ?

Programming language
shapes
Programming thought

5o why study PL ?

Language affects how:
* |deas are expressed
» Computation is expressed

Course Goals

Free your mind”
-Morpheus

Learn New Languages/Constructs

New ways to:
- describe
- organize
- think about
computation

Goal: Enable you to Program

e Readable

e Correct

e Extendable
e Modifiable
e Reusable

Learn How To Learn

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#?...

Learn the anatomy of a PL
e Fundamental building blocks
e Different guises in different PLs

Re-learn the PLs you already know

To Design New Languages

Goal: How to design new PLs

‘who, me ?”

Buried in every extensible system is a PL
e Emacs, Android: Lisp

« Word, Powerpoint: Macros, VBScript

e Unreal: UnrealScript (Game Scripting)
o Facebook: FBML, FBJS

e SQL, Renderman, LaTeX, XML ...

Choose Right Language

Enables you to choose right PL

“...but isn’t that decided by
e libraries,

e standards,

e and my boss ?”
Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Speaking of Right and Wrong...

Imperative
Programming

X = X+1

Imperative = Mutation

Imperative = Mutation

@&'

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

~

,?‘ Jo,hn Carmack ¥ Follow A~

& ID_AA_Carmack
I am starting to remove op= operator overloads to
discourage variable mutation.

evwests | Favorm 29 -9 e

& Reply 13 Retweeted W Favorite

Don’t take my word for it

Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,
imperative is the wrong default”

Q
- ' -
/ -

-

GEARSS-WAR = O

Functional
Programming

Functional

No Assignhment.
No Mutation.
No Loops.

OMG! Who uses FP?!

So, Who Uses FP ?

GO \ /gle

MapReduce

So, Who Uses FP ?

¥)

\

Micresoft
Linqg, F#

So, Who Uses FP ?

Erlang

So, Who Uses FP ?

Scala

So, Who Uses FP ?

Wall Street

(all of the
above)

Course Mechanics

Mechanics

cseweb.ucsd.edu/classes/sp12/cse130-a/

Nothing printed, everything on Webpage!

Peer Instruction (ish)

Peer Instruction/Clickers

e Make class interactive
- Help YOU and ME understand whats tricky

e Clickers Not Optional
- Cheap ones are fine
- 5% of your grade
- Respond to 75% questions

e Seating in groups (links on Piazza)

e Bring laptop if you have one

In Class Exercises

1. Solo Vote: Think for yourself, select
answer

2. Discuss: Analyze Problem in Groups of 3

o W ®

AN

Practice analyzing, talking about tricky
notions

Reach consensus
Have questions, raise your hand!

. Group Vote: Everyone in group votes

Must have same vote to get points

. Class—wide Discussion:

Requirements and Grading

e The good news: No Homework

e [n-Class Exercises: 5%
e Midterm: 30%
e Programming Assignments (7-8): 30%
e Final: 35%

Grading on a curve. Two hints/rumors:

1. Lot of work
2. Don’t worry (too much) about grade

No Recommended Text

e Online lecture notes
e Resources posted on webpage
 Pay attention to lecture and section!

e Do assignments yourself!

Suggested Homeworks

« On webpage after Thursday lecture

e Based on lectures, section of previous Tue, Thu

e Recommended, ungraded, HW problems are
sample exam questions

« Webpage has first samples already

Weekly Programming Assignments

Schedule up on webpage

Due on Friday 5 PM

Deadline Extension:
- Four “late days”, used as “whole unit”
- 5 mins late = 1 late day
- Plan ahead, no other extensions

Plan

1.FP, Ocaml, 4 weeks
2.00, Scala, 4 weeks
3.Logic, Prolog, 1 week

Weekly Programming Assignments

Unfamiliar languages
+ Unfamiliar environments

Start Early!

Weekly Programming Assignments

Scoring = Style + Test suite

No Compile, No Score

Weekly Programming Assignments

!.\ r l
- : -
g
=
I\ -
| y

Forget Java, C, C++ ...
... other 20t century PLs

Don’t complain
... that Ocaml is hard
... that Ocaml is @!%@#

Immerse yourself in new language

It 1s not.

Immerse yourself in new language

Free your mind.

Word from our sponsor ...

e Programming Assignments done ALONE

« We use plagiarism detection software
- | am an expert
- Have code from all previous classes
- MOSS is fantastic, plagiarize at your own risk

e Zero Tolerance
- offenders punished ruthlessly

e Please see academic integrity statement

Fle Est View Go Bookmarks Tools Help

¢ Q g I)D @ 3 g L] MEpoimons.cs berkeloy ack - moss results TOMMSET TOmalchQ Mre &) O ¥ regis expressom
@ Ceting Stanted | Research Foundation | JUbertu | JMomsant - Soytears | 320 |)550 | 682 - Data Mining (] Lasest Hoacines
() Inces of /-phanocscSE0 Ex: 1 C5CI111.052188 - WeeCT 4.1.5 1R WeeCT Shon Answer Roguisr Expressions || NICIHES 107 Aec—_—Gprm/ ansssssieip] | ncex of /-planccsci 110aMOSS 1 83

%—w (-'m%@%|
7

PTINLIT S20= ,ULISrUttr, Y

while(ndis<eul){ /*showing values of the multiple between the limits*/ :: /*keep track of how sany even aod odd sultiples are duplayed,—
prantf(*v10d”.mdis):/*10 spaces for each value, right align*/ 1f (disMulen2)
0dde+;
1f((nd2sN2)!=l)/*Counting odds and evens*/ else
ovenes: avenss:
reustendis: réume=dismult: /*sum wp all sultple values in the rowt/
counterss; counterss;
sdls+emlt; disMult+emult; /*set display value to next sultiple valuyet/
1f (nd23%2) /*do not display a multiple value of zero*/
0ddes: 1f (disMultes0)
disMulteenult:
| S— /*display the sum of the row at the end of the row*/
| S—
1f{counter==5){/*summin at end of each row*/s
prantf(*| M\n".rsus); 1T (counterss5)(
sumt=rsun; /*running total sum by adding row sums*/ printf (" |N104\n", rSum):
rsus=0; /*reset row sum for next row*/ suss=rsum; /*add the sus of the row to the tot
countersl: /freset counter for next row*/ rSumel; /'resel rov sum for new row*/
counter=1; /*reset counter for new row*/
vhile((counter <= %) && (counter != 1}){/*placing spaces to keep alignment*/ }
prantf(* o H /*d1splay blank spaces to kesp table nice*/
counterss: while((counter<eS)&&(countertal)){
prantf(* *):
if{counter==6){ /*suming at end of the last row*/ COUNterss;
printf(~| ", rsum);
SUBSrsuUn; /*display the sum of the rov at the end of 1t
counter = 1; 1f(counteress){
prantf(*IN10d", rSum);
SuBRs=rSun;
printf(*\n\nThere are % odd and \d even rembers.\n",odd.even): /*stating the rSum=0;
prantf (“The sus of a1l nusbers 1s; M\n\n® . sus): /*showing the sus*/ countersl:
/*resting the value for next tise running through prog }
*van=0; /*display total nusber of odd and even sultiples and the sus of all values*/
odd=0; printf(*\n\nThere are %d odd and % even nusbers.\n", odd,even):
sum=0; prantf(*The sus of all nusbers 1s: Md\n", sum):
/*reset values for next repititiont/
even=0;
} odde0);
sum=0.
)
return O; return O;
v v
] P CEEEEEEEESSSSSSSsssssseeeeeeeee——— >

| O FedNest (DFinsPrevious | |Mghight [Makchcase @
MR MOss 3 Derkekty 00 ~moad #edults TOMMSET IO mate h2- 1 Mris0

To Ask Me Questions?

Say hello to OCaml

void sort(int arr[], int beg, int end) {
if (end > beg + 1) {
int piv = arr[beqg];
int 1 = beg + 1;

int r = end;
while (1 != r-1){ let rec sort xs =
if(arr[l] <= piv) match xs with [] -> []
1++; | (h::t) —>
else let(l,r)= List.partition ((<=) h) t in
e (Ears L], GaLe =]} (sort 1)@h:: (sort r)
}
if(arr[l]<=piv && arr[r]l<=piv . .
e SR Quicksort in Ocaml
else if(arr[l]<=piv && arr[r]>piv)
{1++; r--;}
else if (arr[l]l>piv && arr[r]<=piv)
swap (&arr[1++], &arr[r--1);
else
r=1-1;
swap (&arr[r—--], &arr|[begl);
sort (arr, beg, r);

(
sort (arr, 1, end);

Quicksort in C

Why readability matters...

sort=: ((S:Q(<#[), (=#[) ,S:CQ(>#[)) ({~ 2€#))": (1:<#)

Quicksort in J

Say hello to OCaml

let rec sort xs =
match xs with

] => []

| h::t ->
let (l,r)= List.partition ((<=) h) t in
(sort 1)@h:: (sort r)

Quicksort in OCaml

Plan (next 4 weeks)

1. Fast forward
e Rapid introduction to whats in ML

2. Rewind

3. Slow motion
e« Go over the pieces individually

ML: History, Variants

“Meta Language”
Designed by Robin Milner
To manipulate theorems & proofs

Several dialects:
o Standard ML (SML)

- Original syntax
e Objective Caml: (Ocaml)

- “The PL for the discerning hacker”
- State-of-the-art, extensive library, tool, user support

e F# (Ocaml+.NET) released in Visual Studio

ML’s holy trinity

Expression | > Value

Type

e Everything is an expression
e Everything has a value
e Everything has a

Interacting with ML

“Read-Eval-Print” Loop

Repeat:

1. System reads expression e

2. System evaluates e to get value v
3. System prints value v and type

What are these expressions, values and

Base type: Integers

2 2
_— 4 ...
... , >
2 * (9410) 38
2 * (9+10) -12 26
int

Complex expressions using “operators”: why the quotes ?)

*

o+,-,

e div, mod

Base type: Strings

string

Complex expressions using “operators”: why the quotes ?)

e Concatenation *

Base type: Booleans

Lrue true

false false

1 < 2 true
... , S —

\\aall — \\pqll false

(\\aa// — \\pq//) 5 & (1<2) false

(Maa” = “aa”) && (1<2) true

bool

Complex expressions using “operators”:
e “Relations”: =, <, <=, >=
e &&, ||, not

Type Errors

Untypable expression is rejected

e No casting, No coercing

e Fancy algorithm to catch errors

e ML’s single most powerful feature (why ?)

Complex types: Product (tuples)

(2+2 , 7>8); | > (4,fal_se)

int * bool

Complex types: Product (tuples)

(9-3,%ab”*“cd”, (242 ,7>8)) | > (6, “abcd”, (4,false))

(int * string * (int * bool))

e Triples,...

e Nesting:
- Everything is an expression
- Nest tuples in tuples

Complex types: Lists

[17 [] a list
................................... [123][1,2,3]““5‘(
..... [1+12+2 ; 3+ - 4+4] [2,4,6,8] mtust
[abCAd] [“a”,“b”,“cd”]strmghst
[(1’aAb)(3+4’C)] [(1’“ab”),(7,“cn)](mtstrmg)hst
[[1]17[2;3]17[4;5;6]1; [[11;[2;3];[4;5;6]]; (int list) list

e Unbounded size
e Can have lists of anything (e.g. lists of lists)
e but ...

Complex types: Lists

All elements must have same type

Complex types: Lists

List operator “Cons”

1::107; [1] int list
1::[2]; | > [1:2] int list
\\a// .. [\\b//; “C”] ; [“a”;“b”;“cn] String l.lst

Can only “cons” element to a list of same type
l:: [\\bll; \\Cd//];

Complex types: Lists

List operator “Append” @

[1;2]1Q@[3;4;:5]; [1;2;3;4;5] int list
[fa”]1@["Db”] | [“a”;“b”] string list
[1@[1]; [1] string list

Can only append two lists 1 @ [2;3];

... of the same type [[1] @ [“a“;“bB"];

Complex types: Lists

List operator “head” hd

Only take the head a nonempty list 'hd [];

Complex types: Lists

List operator “tail” tl

Only take the tail of nonempty list €1 [];

Recap: Tuples vs. Lists ?

What’s the difference ?
e Tuples:

- Different types, but fixed number:
(3, “abcd”) (int * string)
e pair = 2 elts
(3, “abcd”,(3.5,4.2)) (int * string * (float* float))
o triple = 3 elts

e Lists:

- Same type, unbounded number:
[3;4;5;6;7] int list

So far, a fancy calculator...

... what do we need next ?

