CSE 130 : Spring 2015

Programming Languages

Lecture 1: Hello, World!

Ranjit Jhala
UC San Diego

A Programming Language So why study PL ?

e Two variables

~x, ¥ Ll: x++;
€€ . .
. Three operations y==; A different language is a
- ox =) sz e L different vision of life”
- X-- L2: ..

L (x=0)? L1:12;: - Federico Fellini

Fact: This is “equivalent to” to every PL!

Good luck writing quicksort
... or Windows, Google, Spotify!

So why study PL ? So why study PL ?

Programming language Language affects how:
shapes - |deas are expressed

Programming thought « Computation is expressed

Course Goals Learn New Languages/Constructs
New ways to:
L . - d ib
¥ ! “Free your mind” -ofgsz:r:]iz:
-Morpheus - think about

computation

Goal: Enable you to Program

e Readable

e Correct

e Extendable
« Modifiable
e Reusable

Goal: How to learn new PLs

No Java (C#) 15 (10) years ago
AJAX? Python? Ruby? Erlang? F#:...

Learn the anatomy of a PL
» Fundamental building blocks
« Different guises in different PLs

Re-learn the PLs you already know

To Desigh New Languages

Goal: How to design new PLs

“who, me ?”

Buried in every extensible system is a PL
« Emacs, Android: Lisp

» Word, Powerpoint: Macros, VBScript

e Unreal: UnrealScript (Game Scripting)
e Facebook: FBML, FBJS

e SQL, Renderman, LaTeX, XML ...

Enables you to choose right PL

“...but isn’t that decided by

Choose Right Language

e libraries, %
e standards S

, eaking of Right and Wrone...
e and my boss ?”) . P = = g

Yes.

My goal: educate tomorrow’s tech leaders
& bosses, so you’ll make informed choices

Imperative
Programming

X = X+1

Imperative = Mutation

Don’t take my word for it

John Carmack
Creator of FPS: Doom, Quake,...

Imperative = Mutation <

,&‘ John Carmack ¥ Follow &~
ID_AA_Carmack

L
\ I am starting to remove op= operator overloads to
Y discourage variable mutation.

39 16 S -9 et a

% 4~ Reply 13 Retweeted Wy Favorite

Don’t take my word for it

Tim Sweeney (Epic, Creator of UNREAL)

“In a concurrent world,

imperative is the wrong default” Fu nCtional
Programming

h o RN
Y -\ \
T3 V- >
p p » ~
/
-

N\
£

P

C GEARSAS-WAR - O

Functional

No Assighment.
No Mutation.
No Loops.

OMG! Who uses FP?!

So, Who Uses FP ? So, Who Uses FP ?

Google

Microsoft
MapReduce Linq, F#

So, Who Uses FP ? So, Who Uses FP ?

Erlang Scala

So, Who Uses FP ? So, Who Uses FP ?

Wall Street

(all of the ...CSE 130

above)

Mechanics

cseweb.ucsd.edu/classes/sp12/cse130-a/

Course Mechanics

Nothing printed, everything on Webpage!

Peer Instruction/Clickers

e Make class interactive
- Help YOU and ME understand whats tricky

Peer Instruction (ish) -5 ot optona

- Cheap ones are fine
- 5% of your grade
- Respond to 75% questions

 Seating in groups (links on Piazza)

 Bring laptop if you have one

In Class Exercises

1. Solo Vote: Think for yourself, select
answer

2. Discuss: Analyze Problem in Groups of 3

e Practice analyzing, talking about tricky
notions

e Reach consensus
Have questions, raise your hand!

. Group Vote: Everyone in group votes
Must have same vote to get points

o W

. Class-wide Discussion:

N

No Recommended Text

e Online lecture notes
e Resources posted on webpage
e Pay attention to lecture and section!

e Do assignments yourself!

Requirements and Grading

The good news: No Homework

In-Class Exercises: 5%
Midterm: 30%
Programming Assignments (7-8): 30%
Final: 35%

Grading on a curve. Two hints/rumors:

1.

Lot of work

2. Don’t worry (too much) about grade

Suggested Homeworks

On webpage after Thursday lecture

Based on lectures, section of previous Tue, Thu

Recommended, ungraded, HW problems are
sample exam questions

Webpage has first samples already

Weekly Programming Assignments

Schedule up on webpage

Due on Friday 5 PM

Deadline Extension:
Four “late days”, used as “whole unit”
5 mins late = 1 late day
Plan ahead, no other extensions

Weekly Programming Assignments

Unfamiliar languages
+ Unfamiliar environments

Start Early!

Plan

1.FP, Ocaml, 4 weeks
2.00, Scala, 4 weeks
3.Logic, Prolog, 1 week

Weekly Programming Assignments

Scoring = Style + Test suite

No Compile, No Score

Weekly Programming Assignments Immerse yourself in new language

Forget Java, C, C++ ...

nr ... other 20t century PLs It is not

Don’t complain
... that Ocaml is hard
... that Ocaml is @!%@#

Immerse yourself in new language Word from our sponsor ...

e Programming Assignments done ALONE

o We use plagiarism detection software
- | am an expert
- Have code from all previous classes
MOSS is fantastic, plagiarize at your own risk

e Zero Tolerance
- offenders punished ruthlessly

Free your mind. e Please see academic integrity statement

Flo ESt Vew Oo Bookmarks Toos Hep

G- - & T0) £ &y ([revimons.ca berkatoy scumoss resuts 700448 TN omakchd M) © Jwregan expressent
@Ceting Started [Research Foundation | Ubertu [)Monsanss - Soybears (530 [550 [)682- Data Miring 5] Latest Heaines
IrGen of - pharocscSS0 Excicaer £ CSCI11.05 2168 - WeeCT 415 & WetCT Shon Answer Regur E L | incex of i-panccsci 1 1LMOSS a
P/ (50°6) I LA/ pl/ (45%) e
50-74 7420 | S—
30-42 35 | —
42-52) 53-63 | s—
- STSTITTT »3
values of the miltiple between the limits® f how many even and ultiples are displayed
5): /%10 spaces for each value, right align®)
odde+:
fllnd) *Counting odds and evens® else
ovenss. avenss.
rsustendis rSume=disMult; /*sum up a1l multple values in the row*/
counterss; counterss
siistemlt; d1sMlt+emult; /*set display value to next sultiple valuet/
1f (adisn2) /*do not display a multiple value of zerot/
0dd++. 1f (disMultes0)
disMultemmult
| S— /*display the sum of the row at the end of the row*/
| S—

}

printf (“\n\nThere are %d odd and \d even rusbers.\n",odd,even): /*stating the

1=
countersl

all valuest/

printf (*The sus of a1l nusbers 1s: M\n\n® . sum);: /*showing the sus*/ .
van=0; /tresting the value for next tim ruming through pregr] /@1splay total nusber of odd and even multiples a)nd the sus of
pov e A TR R ol B ikt 0 S e u e S l 0 n S
Sum=0. prantf(*The sus of all nusbers 1s: M\n", sum)
t values for next repititiont/ .
}
retum 0
} vl v
< > <€ >
3 Pt regr YFed Nest ()Find Previous [JHghight (] Makch case -
Biycices o barkaey ScHF cea bt TN AT TR b
h M h dabili m
Say hello to OCaml Why readability matters...
void sort(int arr[], int beg, int end) {
if (end > beg + 1){
int piv = arr[beg];
int 1 = beg + 1;
int r = end;
while (1 != r-1){ let rec sort xs =
tflarrll) <= piv) match xs with [] -> []
L4+; [NRGRE) =
else let (l,r)= List.partition ((<=) h) t in

swap (&arr[l], &arr[r--1);

}
if (arr[l]<=piv && arr[r]<=piv)

1=r+1;
else if (arr[l]<=piv && arr[r]>piv)
{1++; r——;}

else if (arr[l]>piv && arr[r]<=piv)
swap (&arr[1l++], &arr[r--]1);

else
r=1-1;
swap (&arr[r--], é&arr[beg]);
sort (arr, beg, r);
sort (arr, 1, end);

Quicksort in C

sort=: (($:Q(<#[), (=#[) ,$:Q(>#[)) ({~ 2@#))": (1:<#)

(sort 1)@h:: (sort r)

Quicksort in Ocaml
Quicksort in J

Say hello to OCaml

let rec sort xs =
match xs with
I [] => []
| h::t ->
let (l,r)= List.partition ((<=) h) t in
(sort 1)@h:: (sort r)

Quicksort in OCaml

ML: History, Variants

“Meta Language”
Designed by Robin Milner
To manipulate theorems & proofs

Several dialects:
» Standard ML (SML)
- Original syntax
e Objective Caml: (Ocaml)
- “The PL for the discerning hacker”
- State-of-the-art, extensive library, tool, user support
o F# (Ocaml+.NET) released in Visual Studio

Plan (next 4 weeks)

1. Fast forward
e Rapid introduction to whats in ML

2. Rewind

3. Slow motion
» Go over the pieces individually

ML’s holy trinity
—>

Expression Value

Type

e Everything is an expression
e Everything has a value
« Everything has a

Interacting with ML

“Read-Eval-Print” Loop

Repeat:

1. System reads expression e

2. System evaluates e to get value v
3. System prints value v and type

What are these expressions, values and ?

Base type: Strings

A\Y ab 4 “ab ”
({3

”»

A\Y ab ” A “Xy” abxy

string

Complex expressions using “operators”:(why the quotes ?)

e Concatenation *

Base type: Integers

2 2

240 4

2 x (9+10) Y 38

2 * (9+10) -12 26
int

' i . (why the quotes ?)
Complex expressions using “operators’:(why th ?

*
)

e div, mod

o +, -

Base type: Booleans

true true

false false

1 <2 N true

“aa” = “pg” - v false

(“aa” = “pg”) && (1<2) false

(“aa” = “aa”) && (1<2) true
bool

Complex expressions using “operators”:
e “Relations”: =, <, <=, >=
e &&, ||, not

Type Errors

(2+3) | | (\\all — \\bl/)

\\pqll A 9
(2 + \\all)

Untypable expression is rejected

» No casting, No coercing

» Fancy algorithm to catch errors

e ML’s single most powerful feature (why ?)

Complex types: Product (tuples)

(9-3,%ab”~Ved”, (2+2 ,7>8)) > (6, “abcd”, (4false))

(int * string * (int * bool))

e Triples,...

e Nesting:
- Everything is an expression
- Nest tuples in tuples

Complex types: Product (tuples)

(2+2 , 7>8); [C——> (4,false)
int * bool
Complex types: Lists
(1; ["a list
[1g2g3] ¢ [1;2;3] int list
[1+1;2+2;3+3;4+4]; [2;4;6;8] int list

[\\all; “b”; \\C/I/\\\d//] ; [“a”;“b”; “Cd”] String list

[(1’ \\all/\\\bll) ; (3+4, \\CII)] ; [(1"‘ab”);(7,“c”)]

[[1]7[2;3);[4:5:611; [[11;[2;3];[4;5;6]1; (int list) list

e Unbounded size

e Can have lists of anything (e.g. lists of lists)
e but ...

(int*string) list

Complex types: Lists

[1; \\pqll] ;

All elements must have same type

Complex types: Lists

List operator “Append” @

[1;2]@[3;4:;5]; [1;2;3;4;5] int list
ta”]e[b” |:> [“a”;“b”] string list
(1e[il; [1] string list

Can only append two lists 1 @ [2;3];

... of the same type '[L1] @ [“a“;"D“];

Complex types: Lists

List operator “Cons”

Lzs[[]g [1] int list
1::02); > [12] int List
NG, [\\b"’. \\c"] ; [“a";“b”;“c"] String list

Can only “cons” element to a list of same type
l:: [\\bll; \\Cd//];

Complex types: Lists

List operator “head” hd

hd [1;2]; int
[] N 1 i
hd ([“a”]@[“b"]); “a” string

Only take the head a nonempty list 'hd [];

Complex types: Lists

List operator “tail” tl

int list

tl [1;2;3]; N [253]
tl ([“a”]1@["b"]); Vb7 string list

Only take the tail of nonempty list €1 [];

So far, a fancy calculator...

... what do we need next ?

Recap: Tuples vs. Lists ?

What’s the difference ?

e Tuples:

- Different types, but fixed number:
(int * string)

(3, “abcd”)
o pair =2 elts

(3, “abcd”, (3.5,4.2))

« triple = 3 elts
e Lists:

(int * string * (float* float))

- Same type, unbounded number:

[3;4;5;6;7]

int list

