
 
CSE 130: Programming Languages 

Ranjit Jhala
UC San Diego

Polymorphism

(a) 0 (b) 2 (c) 100 (d) 102 (e) 12

let f g =
 let x = 0 in
 g 2
let x = 100
let h y = x + y
let res = f h

Q: What is the value of res ?

Static/Lexical Scoping

• For each occurrence of a variable,
– Unique place in program text where variable defined
– Most recent binding in environment
!

• Static/Lexical: Determined from the program text
– Without executing the program
!

• Very useful for readability, debugging:
– Don’t have to figure out “where” a variable got assigned
– Unique, statically known definition for each occurrence

Immutability: The Colbert Principle
!

“A function behaves the same way on
Wednesday, as it behaved on Monday,

no matter what happened on Tuesday!”

Polymorphism

5

News

• Midterm on Friday
– Double-sided “cheat sheet”
– Printed, if you like
!

• PA4 due NEXT Friday @ 5p
– First half relevant for Midterm

Polymorphism enables Reuse

• Can reuse generic functions:

map :’a * ’b -> ’b * ’a

filter: (’a -> bool) -> ’a list -> ’a list
rev: ’a list -> ’a list

length: ’a list -> int
swap: ’a * ’b -> ’b * ’a

sort: (’a -> ’a -> bool) -> ’a list -> ’a list
fold: …

• If function (algorithm) is independent of
type, can reuse code for all types !

Polymorphic Data Types
• Data types are also polymorphic!
!
!

• Type is instantiated for each use:

!
type ’a list =
 Nil
| Cons of (’a * ’a list)

Cons(1,Cons(2,Nil)) :

Cons(“a”,Cons(“b”,Nil)) :

Cons((1,2),Cons((3,4),Nil)) :

Nil :

Polymorphic Data Types
• Data types are also polymorphic!
!
!

• Type is instantiated for each use:

!
type ’a list =
 Nil
| Cons of (’a * ’a list)

Cons(1,Cons(2,Nil)) : int list

Cons(“a”,Cons(“b”,Nil)) : string list

Cons((1,2),Cons((3,4),Nil)) : (int*int) list

Nil : ’a list

Datatypes with many type variables

type (’a, ’b) tree =
 Leaf
 | Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree

(a) (int, string) tree
(b) (‘a,‘b) tree
(c) int tree
(d) type error
(e) (string, int) tree

type (’a, ’b) tree =
 Leaf
 | Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree
!
let res = Node (“alice”, 5, Leaf, Leaf)

Q: What is the type of res ?

Datatypes with many type variables
• Multiple type variables
!
!

• Type is instantiated for each use:

!
type (’a,’b) tree =
 Leaf
| Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree

Node(“alice”, 2, Leaf, Leaf)

Node(“charlie”, 3, Leaf, Leaf)

Node(“bob”, 13,
!
 , Node(“alice”, 2, Leaf, Leaf)

 , Node(“charlie”, 3, Leaf, Leaf))

(a) (int, string) tree
(b) (‘a,‘b) tree
(c) int tree
(d) type error
(e) (string, int) tree

type (’a, ’b) tree = Leaf
 | Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree
!
let res = Node(“bob”,13,Node(3, “alice”,Leaf, Leaf)
 ,Leaf)

Q: What is the type of res ?

Datatypes with many type variables
• Multiple type variables
!
!

• Type is instantiated for each use:

!
type (’a,’b) tree =
 Leaf
| Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree

Node(“alice”, 2, Leaf, Leaf)

Node(“charlie”, 3, Leaf, Leaf)

Node(“bob”, 13,
!
 , Node(“alice”, 2, Leaf, Leaf)

 , Node(3, “charlie”, Leaf, Leaf))

A tricky question: consider this type

Which is a valid Ocaml Expression?

type (’a, ’b) wierdlist =
 Nil
 | Cons ’a* (’b, ’a) wierdlist

(a) Cons(1, Cons(“a”, Cons(3.14, Nil)))
(b) Cons(1, Cons(“a”, Cons(1, Nil)))
(c) Cons(1, Cons(“a”, Cons(“a”, Nil)))
(d) Cons(1, Cons(1, Cons(“a”, Nil)))
(e) Cons(1, Cons(1, Cons(1, Nil)))

Polymorphic Data Structures
• Container data structures independent of type !
• Appropriate type is instantiated at each use:
!
!
!!

!
• Static type checking catches errors early

– Cannot add int key to string hashtable !
• Generics: in Java,C#,VB (borrowed from ML)

’a list

(’a , ’b) tree
(’a , ’b) hashtbl …

Type Inference

How DOES Ocaml figure out all the types ?!

Polymorphic Types

• Polymorphic types are tricky
!

• Not always obvious from staring at code
!

• How to ensure correctness ?
!

• Types (almost) never entered w/ program!

Polymorphic Type Inference

• Computing the types of all expressions
– At compile time : statically Typed
!

• Each binding is processed in order
– Types are computed for each binding
– For expression and variable bound to
– Types used for subsequent bindings
!

• Unlike values (determined at run-time)

Polymorphic Type Inference

• Every expression accepted by ML must have
 a valid inferred type
!

• Can have no idea what a function does,
 but still know its exact type
!
• A function may never (or sometimes terminate),
 but will still have a valid type

Example 1

!
let x = 2 + 3;;

!
let y = string_of_int x;;

Example 2

!
let x = 2 + 3;;

!
let y = string_of_int x;;

!
let inc y = x + y;;

Whats the type of foo?

let foo x =
 let (y, z) = x in
 z-y

(a) int
(b) int * int
(c) int * int -> int
(d) int -> int -> int
(e) Error

Example 4

let rec cat xs =

 match xs with

 | [] -> cat []

 | x::xs -> x^(cat xs)

(a) string -> string
(b) string
(c) string list -> string list
(d) string list -> string
(e) Error

Example 5

let rec cat xs =

 match xs with

 | [] -> “”

 | x::xs -> x^(cat xs)

ML doesn’t know what function does,
or even that it finishes only its type!

let rec cat xs =

 match xs with

 | [] -> “”

 | x::xs -> x^(cat xs)

let rec cat xs =

 match xs with

 | [] -> cat []

 | x::xs -> x^(cat xs)

Example 5

!
let rec map f xs =

 match xs with

 | [] -> []

 | x::xs’ ->(f x)::(map f xs’)

Example 5

“Generalize” Unconstrained Vars
!

(‘a->‘b) -> ‘a list -> ‘b list

!
let rec map f xs =

 match xs with

 | [] -> []

 | x::xs’ ->(f x)::(map f xs’)

What is the type of (<+>)

let (<+>) f g x = g (f x)

(a) ’a -> ’b -> ’c -> ’d
(b) (’a->’b)->(’a ->’b)->(’a ->’b)
(c) (int->char)->(char->bool)->(int->bool)
(d) (int->int)->(int->int)->(int->int)
(e) (’a->’b)->(’b ->’c)->(’a ->’c)

Example 6

!
let compose f g x = f (g x)

Example 7

!
let rec fold f cur xs =

 match xs with

 [] -> cur

 | x::xs’ -> fold f (f cur x) xs’

Example 7

!
let rec fold f cur xs =

 match xs with

 [] -> cur

 | x::xs’ -> fold f (f cur x) xs’

(In Class Exercise A)

!
let rec split xs =

 match xs with

 | [] -> ([], [])

 | [x] -> ([x], [])

 | y::z::xs’ ->

 let ys,zs = split xs’ in

 (y::ys, z::zs)

(In Class Exercise B)
!
let rec merge xs ys =

 match (xs, ys) with

 | ([],_) -> ys

 | (_,[]) -> xs

 | (x::xs’, y::ys’) when x<=y

 -> x :: (merge xs’ ys)

 | (x::xs’, y::ys’)

 -> y :: (merge xs ys’)

(In Class Exercise C)

!
let rec msort xs =

 match xs with

 | [] ->

 []

 | x::xs’ ->

 let ys,zs = split xs in

 merge (msort ys) (msort zs)

Example 11

!
let foo1 f g x =

 if f x

 then x

 else g x

Example 12

let foo2 f g x =

 if f x

 then x

 else foo2 f g (g x)

Binary Search Trees

BST Property:

keys in left < key < keys in right

Node (key, value, left, right)

type (’a, ’b) tree =
 Leaf
 | Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree

Node: “bob”, 13

Node: “alice”, 2

Leaf Leaf

Node: “charlie”, 7

Leaf Leaf

Node(“bob”, 13

 , Node(“alice”, 2, Leaf, Leaf)

 , Node(“charlie”, 3, Leaf, Leaf))

BST Property: keys in left < key < keys in right

Exercise!

Write a function to lookup keys…

type (’a, ’b) tree =
 Leaf
 | Node of ’a* ’b * (’a,’b) tree * (’a,’b) tree

val lookup:’a ->(’a,’b)tree -> ’b option

BST Property: keys in left < key < keys in right

