CSE 130: Programming Languages

Polymorphism

Ranjit Jhala
UC San Diego

Q: What is the value of [

let f g =
let x = 0 1in
g 2
let x = 100
let h v =x + vy
let = f h

A — E—

(@) 0 (b) 2 (c) 100 (d) 102 (e) 12

Static/Lexical Scoping

e For each occurrence of a variable,
- Unique place in program text where variable defined
- Most recent binding in environment

« Static/Lexical: Determined from the program text
- Without executing the program

e Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assighed
- Unique, statically known definition for each occurrence

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

Polymorphism

News

e Midterm on Friday
- Double-sided “cheat sheet”
- Printed, if you like

« PA4 due NEXT Friday @ 5p

- First half relevant for Midterm

Polymorphism enables Reuse

e Can reuse generic functions:

map :'a*’b-> ’b*’a

filter: (’a -> bool) —> ’a list -> ’a list

rev: ’a list —-> ’a list

length: ’a list —> int

swap: '‘a*’b->’b *’a

sort: ('a-> "a -> bool) -> ’a list -> ’a list
fold: ...

e If function (algorithm) is independent of
type, can reuse code for all types !

Polymorphic Data Types

e Data types are also polymorphic!

type "a list =
Nil
| Cons of ("a * "a list)

e Type is instantiated for each use:
Cons(1,Cons(2,Nil)) :
Cons(“a”,Cons(“b”,Nil)) :
Cons((1,2),Cons((3,4),Nil)) :
Nil :

Polymorphic Data Types

e Data types are also polymorphic!

type "a list =
Nil
| Cons of ("a * "a list)

e Type is instantiated for each use:
Cons(1,Cons(2,Nil)) : int list
Cons(“a”,Cons(“b”,Nil)) : string list
Cons((1,2),Cons((3,4),Nil)) : (int*int) list
Nil : ’a list

Datatypes with many type variables

type ('a, "b) tree =
Leaf
| Node of "a* "b * ("a,’b) tree * ('a,’b) tree

N — e ————

Q: What is the type of res?

type ("a, '"b) tree =

Leaf
| Node of "a* '"b * ("a,’b) tree * ("a,’b) tree
let res = Node (“alice”, 5, Leaf, Leaf)

(1nt, string) tree
(a, '\b) tree

type error
(string, int) tree

Datatypes with many type variables

e Multiple type variables

type ('a,’b) tree =
Leaf
| Node of "a* "b * ("a,’'b) tree * ('a,’b) tree

 Type is instantiated for each use:

Node(“alice”, 2, Leaf, Leaf)
Node(“charlie”, 3, Leaf, Leaf)

Node(“bob”, 13,
, Node(“alice”, 2, Leaf, Leaf)
, Node(“charlie”, 3, Leaf, Leaf))

Q: What is the type of res?

type ('a, 'b) tree = Leaf
| Node of "a* 'b * ('a,’b) tree * ("a,’b) tree

let res = Node (“bob”,13,Node (3, “alice”,Leaf, Leaf)
,Leaf)

(1nt, string) tree
(a, '\b) tree

type error
(string, int) tree

Datatypes with many type variables

e Multiple type variables

type ('a,’b) tree =
Leaf
| Node of "a* "b * ("a,’b) tree * ("a,’b) tree

 Type is instantiated for each use:

Node(“alice”, 2, Leaf, Leaf)
Node(“charlie”, 3, Leaf, Leaf)

A tricky question: consider this type

type ('a, 'b) wierdlist =
Nil
| Cons "a* (b, "a) wierdlist

Which is a valid Ocaml Expression?

(@) Cons (1, Cons(“a”, Cons(3.14, Nil)))
(b) Cons (1, Cons(“a”, Cons(l, Nil)))

(C) Cons(1l, Cons(“a”, Cons(“a”, Nil)))
(d) Cons (1, Cons(1l, Cons(“a”, Nil)))

(e) Cons(1l, Cons(1l, Cons(l, Nil)))

Polymorphic Data Structures

o Container data structures independent of type !
e Appropriate type is instantiated at each use:

‘a list
(’a, 'b) tree
(’a, ’b) hashtbl ...

e Static type checking catches errors early
- Cannot add int key to string hashtable

o Generics: in Java,C#,VB (borrowed from ML)

Type Inference

How DOES Ocaml figure out all the types ?!

Polymorphic Types

e Polymorphic types are tricky
e Not always obvious from staring at code

« How to ensure correctness ?

« Types (almost) never entered w/ program!

Polymorphic Type Inference

« Computing the types of all expressions
- At compile time : statically Typed

e Each binding is processed in order
- Types are computed for each binding
- For expression and variable bound to
- Types used for subsequent bindings

e Unlike values (determined at run-time)

Polymorphic Type Inference

e Every expression accepted by ML must have
a valid inferred type

 Can have no idea what a function does,
but still know its exact type

« A function may never (or sometimes terminate),
but will still have a valid type

Example 1

Example 2

Whats the type of foo?

let foo x =
let (y, z) = x 1n
Z2-Y

in

o

(a)
(b) int * int

(C) int * int -> int
(d) int -> int -> int
(e) Error

Example 4

let rec cat xs =
match xs with
| [] -> cat []
| X::Xs =-> x"~(cat xs)

() string -> string

(b) string

(C) string list -> string list
(d) string list -> string

(e) Error

Example 5

let rec cat xs =
match xs with
| [] _> \\ 7/

| X::xs8 =-> x” (cat xs)

ML doesn’t know what function does,
or even that it finishes only its type!

let rec cat xs =
match xs with
| [] -> \ W74

| X::Xs =-> x” (cat xs)

R

let rec cat xs =
match xs with
| [] -> cat []
| X::xXs =-> x"~(cat xs)

-

Example 5

E_xample 5

let rec map £ xs =
match xs with

| L] —-> [

| xX::xs’ —>(f x)::(map £ xs’)

“Generalize” Unconstrained Vars

(‘a->'b) -> ‘a list -> ‘b 1list

What is the type of (<+>)

let (<+>) £ g x = g (f x)

R

(@) 'a -> 'b -=> 'c -> 'd

(b) ("a->'b)->("a ->'b)->("a ->'b)

(c) (int->char)->(char->bool) ->(int->bool)
(d) (int->int)->(int->int)->(int->int)

() ("a->'b)->('b ->'c)->("a ->'c)

l/l.

Example 6 -_-:_(A 0“)—‘%/ >T'*)A>7—»7°‘*

Teornp = T‘G—?TﬂéTX_—”T\?;oo> > (&,—55)—3@;,(>

let compose f g x = £ (g X)

— -
&oo'~7
- N out” S
T';C - 7;5' _’772 \ (b—’)C> —)(a->lo)-—“9(a—>c>\
Toopy = 17 B L
Ty 2Ty =Ta =T

Example 7

P’%’QQQ = (Tw.(—>7Z—>Tw> —Taw >N (3t > Teur
Example 7 -

— (o> >%)> 'a = bluk - 4

"GML 1£ = Tewr ™ Vs 2 @aasg Teur

let rec fold f cur xs =
match xs with

[] —=> cur
| xX::xs’" -> fold £ (f cur x) xs’
f?'asz X st
Tx = X
Ty= X i

Tt = Tow— X >Teur

(In Class Exercise A)

Split- %‘\J‘\A [(5 = <@A/151— *ﬂ. /isi')

let rec split xs =
match xs with

[l => (L1, [1)

[x] =-> ([x], [])
y::é::xs’)—>—

let ys,zs = split xs’ 1in
(y::yS, zZ::2z3)

(In Class Exercise B)

let rec merge Xs ys =
match (xs, ys) with

([]1_) -> VS

(,[]) => xs

(x::xs8", y::ys’) when x<=y
-> X :: (merge xs’ ys)

| (x::xs8", y::ys’)
-> vy :: (merge xs ys’)

\rM Splf{—' : V'Ol ‘o 1L+ ~> ol s {4 //5%—
' . 'a st D ol /ér —'a sk

Inef .
(WClass Exercise

T}S —> T&ao‘y Tes = X 15+
Tﬁ‘b° y /l‘S(’

Tas = Tog = X [oF

let rec msort éj>=
match xs with

0] > |
(1) M. X ne = Y ik

| xX::xs" —->

let ys,zs = split xs 1n

merge (msort ys) (msort zs)
o~ N =

N —

‘1!@76

Example 11

Example 12

Binary Search Trees

type ('a, '"b) tree =
Leaf
| Node of "a* '"b * ("a,’b) tree * ("a,’b) tree

Node (key, value, left, right)

BST Property:
keys in left < key < keys in right

BST Property: keys in left < key < keys in right

Node: “bob”, 13

Node: “alice”, 2 Node: “charlie”, 7

Leaf Leaf Leaf Leaf

Node (“bob”, 13
, Node (“alice”, 2, Leaf, Leaf)
, Node (“charlie”, 3, Leaf, Leaf))

Exercise!

BST Property: keys in left < key < keys in right

type ('a, '"b) tree =
Leaf
| Node of "a* "b * ('a,’b) tree * ("a,’b) tree

Write a function to lookup keys...

val lookup:’a ->("a,’b)tree -> "b option

