CSE 130: Programming Languages

Polymorphism

Ranjit Jhala
UC San Diego

Static/Lexical Scoping

e For each occurrence of a variable,
- Unique place in program text where variable defined
- Most recent binding in environment

« Static/Lexical: Determined from the program text
- Without executing the program

» Very useful for readability, debugging:
- Don’t have to figure out “where” a variable got assigned
- Unique, statically known definition for each occurrence

Q: What is the value of ?

let £ g =

let x = 0 in
g 2

let x = 100
let hy =x+ vy
let = f h

@) 0 (b) 2 (c) 100 (d) 102 (e) 12

Immutability: The Colbert Principle

“A function behaves the same way on
Wednesday, as it behaved on Monday,
no matter what happened on Tuesday!”

News

e Midterm on Friday
- Double-sided “cheat sheet”
. - Printed, if you like
Polymorphism
e PA4 due NEXT Friday @ 5p
- First half relevant for Midterm

Polymorphism enables Reuse Polymorphic Data Types

. ic!
e Can reuse generic functions: Data types are also polymorphic!

type "a list =

map :’a*’b-> ’b*’a Nil .
| Cons of (Ya * "a list)

filter: ('a -> bool) -> ’a list -> ’a list

rev: ’a list -> a list Type is instantiated for each use:

length: ’a list —> int Cons(1,Cons(2,Nil)) :

swap: ‘a*’b->’b *’a

sort: (‘a->'a -> bool) -> ’a list -> ’a list Cons(“a”,Cons(“b”,Nil)) :

UL Cons((1,2),Cons((3,4),Nil)) :
e If function (algorithm) is independent of Nil :

type, can reuse code for all types !

Polymorphic Data Types

» Data types are also polymorphic!

type 'a list =
Nil
| Cons of ('a * 'a list)

» Type is instantiated for each use:
Cons(1,Cons(2,Nil)) : int list
Cons(“a”,Cons(“b”,Nil)) : string list
Cons((1,2),Cons((3,4),Nil)) : (int*int) list
Nil : ’a list

Q: What is the type of res?

type ('a, '"b) tree =
Leaf
| Node of "a* 'b * ("a,’b) tree * ("a,’b) tree

let res = Node (“alice”, 5, Leaf, Leaf)

type error
(string, int) tree

Datatypes with many type variables

type ('a, '"b) tree =
Leaf
| Node of "a* b * ('a,’b) tree * ('a,’b) tree

Datatypes with many type variables

« Multiple type variables

type ('a,’b) tree =
Leaf
| Node of "a* 'b * ('a,’b) tree * ('a,’b) tree

 Type is instantiated for each use:

Node(“alice”, 2, Leaf, Leaf)
Node(“charlie”, 3, Leaf, Leaf)

Node(“bob”, 13,
, Node(“alice”, 2, Leaf, Leaf)
, Node(“charlie”, 3, Leaf, Leaf))

Q: What is the type of res ?

type ('a, ’'b) tree = Leaf
| Node of 'a* 'b * ("a,’b) tree * ('a,’b) tree

let res = Node (“bob”,13,Node (3, “alice”,Leaf, Leaf)
,Leaf)

(@) (int, string) tree
(b) (‘a, ‘b) tree

(c) int tree

(d) type error

(e) (string, int) tree

A tricky question: consider this type

type ('a, ’'b) wierdlist =
Nil
| Cons "a* ("b, ’'a) wierdlist

S

Which is a valid Ocaml Expression?

(@) Cons (1, Cons(“a”, Cons(3.14, Nil)))
(b) Cons (1, Cons(“a”, Cons(l, Nil)))
(c) Cons (1, Cons(“a”, Cons(“a”, Nil)))
(d) Cons (1, Cons (1, Cons(“a”, Nil)))
(e) Cons(1l, Cons(1l, Cons(1l, Nil)))

Datatypes with many type variables

« Multiple type variables

type ('a,’b) tree =
Leaf
| Node of "a* 'b * ('a,’b) tree * ("a,’b) tree

 Type is instantiated for each use:

Node(“alice”, 2, Leaf, Leaf)
Node(“charlie”, 3, Leaf, Leaf)

Polymorphic Data Structures

« Container data structures independent of type !
« Appropriate type is instantiated at each use:

‘a list
(’a, ’'b) tree
(’a, ’b) hashtbl ...

« Static type checking catches errors early
- Cannot add int key to string hashtable

e Generics: in Java,C#,VB (borrowed from ML)

Type Inference

How DOES Ocaml figure out all the types ?!

Polymorphic Type Inference

« Computing the types of all expressions
- At compile time : statically Typed

« Each binding is processed in order
- Types are computed for each binding
- For expression and variable bound to
- Types used for subsequent bindings

» Unlike values (determined at run-time)

Polymorphic Types

e Polymorphic types are tricky
« Not always obvious from staring at code

e How to ensure correctness ?

 Types (almost) never entered w/ program!

Polymorphic Type Inference

» Every expression accepted by ML must have
a valid inferred type

« Can have no idea what a function does,
but still know its exact type

« A function may never (or sometimes terminate),
but will still have a valid type

Example 1 Example 2

let x = 2 + 3;; let x = 2 + 3;;
let y = string of int x;; let y = string of int x;;

let inc v = x + y;;

Whats the type of foo? Example 4
let foo x = let rec cat xs =
let (y, z) = x in match xs with
z-y |11 -> cat []

| X::xs =-> x"(cat xs)

(@) int (@) string -> string

(b) int * int (b) string

(C) int * int -> int () string list -> string list
(d) int -> int -> int (d)

(€) (e)

Error

string list -> string
Error

Example 5

let rec cat xs =
match xs with
| [] _> \\ 7/

| xX::xs => x”(cat xs)

Example 5

let rec map £ xs =
match xs with

[> []

| xX::xs8’ ->(f xX)::

(map £ xs’)

ML doesn’t know what function does,
or even that it finishes only its type!

let rec cat xs =
match xs with
| [] _> \\ 77
| xX::xXs =-> x” (cat xs)

let rec cat xs =
match xs with
| [] -> cat []
| x::xs => x"(cat xs)

Example 5

let rec map £ xs =
match xs with

| [] -> []

| xX::xs’” ->(f x):: (map £ xs’)

“Generalize” Unconstrained Vars

(‘a->'b) -> ‘a l1list -> ‘b list

What is the type of (<+>)

let (<+>) f g x = g (f x)

@ ’'a ->'b ->'c ->'d

(b) ("a->'b)->("a ->'b)->("a ->'b)

(¢) (int->char) ->(char->bool) ->(int->bool)
(d) (int->int)->(int->int)->(int->int)

(e) ("a->'b)->('b ->'c)->("a ->'c)

Example 7

let rec fold f cur xs =
match xs with
[] -> cur
| x::xs’ -> fold £

(f cur x) xs’

)
Example 6 = (I, -)~
Teorme = T.G ﬁTj’—’TXCEJ’?GODQ — (&ﬂb>~>0%(>
let compose £ g x = £ (g x)
6007
_ n ok -
T’;C - 7}' —67; \(lo-ac) —>(a-ab)-’>(4%§\
Tb°D‘1 —_ wa (__//—/
= T" o T = — T,
Tj TD ? p) T?(% F
TM™ + Ty
%%“ Ty
Tht = (Toue 2% =Tew) =T X 50 > Tr

b
Example 7 = (a5 03> ‘a o 'blist
/[:GML T—,@ = Tewr = Txs ? Reozg Teur

let rec fold f cur xs =
match xs with

[] -> cur
| x::xs’ => fold £ (f cur x) xs’
B Ty = X sk
Tx‘- X
T,a= X1t

: TW_) >< %TQ&V

(In Class Exercise A) (In Class Exercise B)

plit §‘°°A It = (Bhls- x & [ist

vl Splree = \fou ik > ‘o lnk xla s+
'a sk > la lsk —='a lot

““*(i“r‘{?t[ass‘;’ Exercise C) Example 11

T —> Twoy, s = X st

Example 12 Binary Search Trees

let foo2 f g x = type (‘a, 'b) tree =
1f £ x Leaf
| Node of '"a* 'b * ("a,’b) tree * ("a,’b) tree
then x

else foo2 £ g (g x)
Node (key, value, left, right)

BST Property:
keys in left < key < keys in right

BST Property: keys in left < key < keys in right

Exercise!
Node: “bob”, 13 BST Property: keys in left < key < keys in right
Node: “alice”, 2 Node: “charlie”, 7
|Leaf| |Leaf| |Leaf| |Leaf| type ('a, 'b) tree =
Leaf
| Node of "a* 'b * ("a,’b) tree * ('a,’b) tree

Node (“bob”, 13
, Node(“alice”, 2, Leaf, Leaf)
, Node (“charlie”, 3, Leaf, Leaf))

Write a function to lookup keys...

val lookup:’a ->('a,’b)tree -> b option

