
 
CSE 130 : Programming Languages 

Ranjit Jhala
UC San Diego

Higher-Order Functions

Recursion

• A way of life
• A different way to view computation

– Solutions for bigger problems
– From solutions for sub-problems

!
Why know about it ?
1. Often far simpler, cleaner than loops

– But not always…

2. Forces you to factor code into reusable units
– Only way to “reuse” loop is via cut-paste

Q: What does this evaluate to ?

(a) [0;1;2]
(b) [0;0;0]
(c) []
(d) [2;2;2]
(e) [2;1;0]

let rec foo i j =
 if i >= j then []
 else i::(foo (i+1) j)
in foo 0 3

Q: What does this evaluate to ?

range 3 3 ====> []

let rec range i j =
 if i >= j then []
 else i::(range (i+1) j)

range 2 3 ====> 2::(range 3 3) ====> 2::[]
range 1 3 ====> 1::(range 2 3) ====> 1::2::[]
range 0 3 ====> 0::(range 1 3) ====> 0::1::2::[]

Q: What does this evaluate to ?

let rec range i j =
 if i >= j then []
 else i::(range (i+1) j)

Tail Recursive?

Q: What does this evaluate to ?

let range lo hi =
 let rec helper res j =
 if lo >= j then res
 else helper (j::res)(j-1)
 in helper [] hi

Tail Recursive!

Moral of the day...

Recursion good...
...but HOFS better!

News

• PA2 due tonight @ 11:59:59 pm
!

• PA3 goes up soon
!

• Midterm Fri 5/8
– In class
– Open book etc.
– Practice materials on webpage

Today’s Plan

• A little more practice with recursion
– Base Pattern -> Base Expression
– Induction Pattern -> Induction Expression

!
• Higher-Order Functions

– or, why “take” and “return” functions ?

Write: evens

(* val evens: int list -> int list *)
let rec evens xs = match xs with
 | [] -> ...
 | x::xs’ -> ...

evens [] ====> []
evens [1;2;3;4] ====> [2;4]

Write: evens

(* val evens: int list -> int list *)
let rec evens xs = match xs with
 | [] -> []
 | x::xs’ -> if x mod 2 = 0
 then x::(evens xs’)
 else (evens xs’)

evens [] ====> []
evens [1;2;3;4] ====> [2;4]

Write: fourLetters

fourLetters []
 ====> []
fourLetters [“cat”;“must”;“do”;“work”]
 ====> [“must”; “work”]

(* fourLetters: string list -> string list *)
let rec fourLetters xs = match xs with
 | [] -> ...
 | x::xs’ -> ...

Write: evens

(* fourLetters: string list -> string list *)
let rec fourLetters xs = match xs with
 | [] -> []
 | x::xs’ -> if length x = 4
 then x::(fourLetters xs’)
 else (fourLetters xs’)

fourLetters []
 ====> []
fourLetters [“cat”;“must”;“do”;“work”]
 ====> [“must”; “work”]

YUCK!!!

Yuck! Most code is same!

(* fourLetters: string list -> string list *)
let rec fourLetters xs = match xs with
 | [] -> []
 | x::xs’ -> if length x = 4
 then x::(fourLetters xs’)
 else (fourLetters xs’)

(* val evens: int list -> int list *)
let rec evens xs = match xs with
 | [] -> []
 | x::xs’ -> if x mod 2 = 0
 then x::(evens xs’)
 else (evens xs’)

YUCK!!!

Yuck! Most code is same!

(* fourLetters: string list -> string list *)
let rec foo xs = match xs with
 | [] -> []
 | x::xs’ -> if length x = 4
 then x::(foo xs’)
 else (foo xs’)

(* evens: int list -> int list *)
let rec foo xs = match xs with
 | [] -> []
 | x::xs’ -> if x mod 2 = 0
 then x::(foo xs’)
 else (foo xs’)

Moral of the Day...

“D.R.Y”
Don’t Repeat Yourself!

Moral of the Day...

HOFs Allow “Factoring”
!

General “Pattern”
+

 Specific “Operation”

YUCK!!!

The “filter” pattern

letrec fourLetters xs =
 match xs with
 | [] -> []
 | x::xs’ -> if length x = 4
 then x::(foo xs’)
 else (foo xs’)

let rec evens xs =
 match xs with
 | [] -> []
 | x::xs’ -> if x mod 2 = 0
 then x::(foo xs’)
 else (foo xs’)

let rec filter f xs =
 match xs with
 | [] -> []
 | x::xs’ -> if f x
 then x::(filter xs’)
 else (filter xs’)

Repetitive Code Begone!

The “filter” pattern

let rec fourLetters xs =
 match xs with
 | [] -> []
 | x::xs’ -> if length x = 4
 then x::(foo xs’)
 else (foo xs’)

let rec evens xs =
 match xs with
 | [] -> []
 | x::xs’ -> if x mod 2 = 0
 then x::(foo xs’)
 else (foo xs’)

let rec filter f xs =
 match xs with
 | [] -> []
 | x::xs’ -> if f x
 then x::(filter xs’)
 else (filter xs’)

let evens xs =
 filter (fun x -> x mod 2 = 0) xs

let fourLetters xs =
 filter (fun x -> length x = 4) xs

Factor Into Generic + Specific

Generic “filter” pattern

let rec filter f xs =
 match xs with
 | [] -> []
 | x::xs’ -> if f x
 then x::(filter xs’)
 else (filter xs’)

let evens xs =
 filter (fun x -> x mod 2 = 0) xs

let fourLetters xs =
 filter (fun x -> length x = 4) xs

Specific Operations

Write: listUpper

listUpper [] ====> []

listUpper [“carne”; “asada”] ====> [“CARNE”; “ASADA”]

(* string list -> string list *)
let rec listUpper xs =
 match xs with
 | [] -> ...
 | x::xs’-> ...

Write: listUpper

(* string list -> string list *)
let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

listUpper [] ====> []

listUpper [“carne”; “asada”] ====> [“CARNE”; “ASADA”]

Write: listSquare

listSquare [] ====> []
listSquare [1;2;3;4;5] ====> [1;4;9;16;25]

(* int list -> int list *)
let rec listSquare xs =
 match xs with
 | [] -> ...
 | x::xs’-> ...

Write: listSquare

listSquare [] ====> []
listSquare [1;2;3;4;5] ====> [1;4;9;16;25]

(* int list -> int list *)
let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

Yuck! Most code is same!

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

What’s the Pattern?

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

What’s the Pattern?

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

“Refactor” Pattern

let rec pattern ...

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

“Refactor” Pattern

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’-> (f x)::(map f xs’)

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

“Refactor” Pattern

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’-> (f x)::(map f xs’)

let listUpper xs = map (fun x -> uppercase x) xs

let rec listUpper xs =
 match xs with
 | [] ->[]
 | x::xs’->(uppercase x)::(listUpper xs’)

“Refactor” Pattern

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’-> (f x)::(map f xs’)

let listUpper = map uppercase

let rec listSquare xs =
 match xs with
 | [] -> []
 | x::xs’-> (x*x)::(listSquare xs’)

“Refactor” Pattern

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’-> (f x)::(map f xs’)

let listSquare = map (fun x -> x*x)

Factor Into Generic + Specific

Generic “iteration” pattern

let listSquare = map (fun x -> x * x)

let listUpper = map uppercase

Specific Op
let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’-> (f x)::(map f xs’)

Moral of the Day...

“D.R.Y”
Don’t Repeat Yourself!

Q: What is the type of map?

(a) (`a -> `b) -> `a list -> `b list

(b) (int -> int) -> int list -> int list

(c) (string -> string) -> string list -> string list

(d) (`a -> `a) -> `a list -> `a list

(e) (`a -> `b) -> `c list -> `d list

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’ -> (f x)::(map f xs’)

Q: What is the type of map?

(a) (`a -> `b) -> `a list -> `b list

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’ -> (f x)::(map f xs’)

Type says it all !
• Apply “f” to each element in input list
• Return a list of the results

Q: What does this evaluate to ?

(a) [2;4;6]
(b) [3;5]
(c) Syntax Error
(e) Type Error

map (fun (x,y) -> x+y) [1;2;3]

Don’t Repeat Yourself!

“Factored” code:
• Reuse iteration template
• Avoid bugs due to repetition
• Fix bug in one place !

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’ -> (f x)::(map f xs’)

Don’t Repeat Yourself!

Made Possible by Higher-Order Functions!

let rec map f xs =
 match xs with
 | [] -> []
 | x::xs’ -> (f x)::(map f xs’)

Recall: len

len [] ====> 0
len [“carne”; “asada”] ====> 2

(* ‘a list -> int *)
let rec len xs =
 match xs with
 | [] -> 0
 | x::xs’-> 1 + len xs’

Recall: sum

sum [] ====> 0
sum [10;20;30] ====> 60

(* int list -> int *)
let rec sum xs =
 match xs with
 | [] -> 0
 | x::xs’-> x + len xs’

Write: concat

concat []
 ====> “”
concat [“carne”; “asada”; “torta”]

 ====> “carneasadatorta”

(* string list -> string *)
let rec concat xs =
 match xs with
 | [] -> ...
 | x::xs’-> ...

Write: concat

concat []
 ====> “”
concat [“carne”; “asada”; “torta”]

 ====> “carneasadatorta”

(* string list -> string *)
let rec concat xs =
 match xs with
 | [] -> “”
 | x::xs’-> x^(concat xs’)

What’s the Pattern?

let rec concat xs =
 match xs with
 | [] -> “”
 | x::xs’-> x^(concat xs’)

let rec sum xs =
 match xs with
 | [] -> 0
 | x::xs’-> x + (sum xs’)

let rec len xs =
 match xs with
 | [] -> 0
 | x::xs’-> 1 + (len xs’)

What’s the Pattern?

let rec concat xs =
 match xs with
 | [] -> “”
 | x::xs’-> x^(concat xs’)

let rec sum xs =
 match xs with
 | [] -> 0
 | x::xs’-> x + (sum xs’)

let rec len xs =
 match xs with
 | [] -> 0
 | x::xs’-> 1 + (len xs’)

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

let rec concat xs =
 match xs with
 | [] -> “”
 | x::xs’-> x^(concat xs’)

let rec sum xs =
 match xs with
 | [] -> 0
 | x::xs’-> x + (sum xs’)

let rec len xs =
 match xs with
 | [] -> 0
 | x::xs’-> 1 + (len xs’)

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

let len =
 foldr (fun x n -> n+1) 0

let sum =
 foldr (fun x n -> x+n) 0

let concat =
 foldr (fun x n -> x^n) ””

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

let len =
 foldr (fun x n -> n+1) 0

let sum =
 foldr (fun x n -> x+n) 0

let concat =
 foldr (fun x n -> x^n) ””

“fold” Pattern

Specific Op

Q: What does this evaluate to ?

(a) [1;2;3]
(b) [3;2;1]
(c) []
(d) [[3];[2];[1]]
(e) [[1];[2];[3]]

foldr (fun x n -> x::n) [] [1;2;3]

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

“fold-right” pattern

foldr f b [x1;x2;x3]
====> f x1 (foldr f b [x2;x3])
====> f x1 (f x2 (foldr f b [x3]))
====> f x1 (f x2 (f x3 (foldr f b [])))
====> f x1 (f x2 (f x3 (foldr f b [])))
====> f x1 (f x2 (f x3 (b)))

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

The “fold” Pattern

Tail Recursive?

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

The “fold” Pattern

Tail Recursive?
No!

let rec foldr f b xs =
 match xs with
 |[] -> b
 |x::xs’-> f x (foldr f b xs’)

Write: concat (TR)

concat []
 ====> “”
concat [“carne”; “asada”; “torta”]

 ====> “carneasadatorta”

let concat xs = ...

Write: concat
let concat xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (res^x) xs’
in helper “” xs

helper “” [“carne”; “asada”; “torta”]
====> helper “carne” [“asada”; “torta”]
====> helper “carneasada” [“torta”]
====> helper “carneasadatorta” []
====> “carneasadatorta”

Write: sum (TR)

let sum xs = ...

sum [] ====> 0
sum [10;20;30] ====> 60

Write: concat
let sum xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (res+x) xs’
in helper 0 xs

helper 0 [10; 100; 1000]
====> helper 10 [100; 1000]
====> helper 110 [1000]
====> helper 1110 []
====> 1110

What’s the Pattern?
let concat xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (res ^ x) xs’
in helper “” xs

let sum xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (res + x) xs’
in helper 0 xs

let foldl f b xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (f res x) xs’
in helper b xs

let sum xs =
 foldl (fun res x -> res + x) 0

let sum xs =
 foldl (fun res x -> res ^ x) “”

“Accumulation” Pattern
let foldl f b xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (f res x) xs’
in helper b xs

let sum xs =
 foldl (fun res x -> res + x) 0

let sum xs =
 foldl (fun res x -> res ^ x) “”

Specific Op

Q: What does this evaluate to ?

(a) [1;2;3]
(b) [3;2;1]
(c) []
(d) [[3];[2];[1]]
(e) [[1];[2];[3]]

foldl (fun res x -> x::res) [] [1;2;3]

let foldl f b xs =
 let rec helper res = function
 | [] -> res
 | x::xs’-> helper (f res x) xs’
in helper b xs

Funcs taking/returning funcs
Identify common computation “patterns”
• Filter values in a set, list, tree …
!

• Iterate a function over a set, list, tree …
!

• Accumulate some value over a collection
!

Pull out (factor) “common” code:
• Computation Patterns
• Re-use in many different situations

!
!
map
!
 !
!
fold
!

Another fun function: “pipe”

let pipe x f = f x

let (|>) x f = f x

Compute the sum of squares of numbers in a list ?

let sumOfSquares xs =
 xs |> map (fun x -> x * x)
 |> foldl (+) 0

Tail Rec ?

Funcs taking/returning funcs
Identify common computation “patterns”
• Filter values in a set, list, tree …
!

• Convert a function over a set, list, tree …
!

• Iterate a function over a set, list, tree …
!

• Accumulate some value over a collection
!

Pull out (factor) “common” code:
• Computation Patterns
• Re-use in many different situations

!
!
map
!
 !
!
fold
!

Functions are “first-class” values

• Arguments, return values, bindings …
• What are the benefits ?

Creating,
(Returning)
Functions

Using,
(Taking)

Functions

Parameterized,
similar functions
(e.g. Testers)

Iterator, Accumul,
Reuse computation
 pattern w/o

exposing local info

Functions are “first-class” values

• Arguments, return values, bindings …
• What are the benefits ?

Creating,
(Returning)
Functions

Using,
(Taking)

Functions

Parameterized,
similar functions
(e.g. Testers)

Iterator, Accumul,
Reuse computation
 pattern w/o

exposing local info

Compose Functions:
Flexible way to build
Complex functions
from primitives.

Higher-order funcs enable modular code
• Each part only needs local information

Funcs taking/returning funcs

Data
Structure
Library
list

Data
Structure

Client
Uses list

Provides meta-functions:
map,fold,filter

to traverse, accumulate over
lists, trees etc.
Meta-functions don’t need client
info (tester ? accumulator ?)

Uses meta-functions:
map,fold,filter

With locally-dependent funs
(lt h), square etc.

Without requiring Implement.
details of data structure

