
 
CSE 130: Programming Languages 

Ranjit Jhala
UC San Diego

Environments & Closures

News
!

• PA 3 due THIS Friday (5/1)
!
!

• Midterm NEXT Friday (5/8)

Recap: Functions as “first-class” values

• Arguments, return values, bindings …
• What are the benefits ?

Creating,
(Returning)
Functions

Using,
(Taking)

Functions

Parameterized,
similar functions
(e.g. Testers)

Iterator, Accumul,
Reuse computation
 pattern w/o

exposing local info

Functions are “first-class” values

• Arguments, return values, bindings …
• What are the benefits ?

Creating,
(Returning)
Functions

Using,
(Taking)

Functions

Parameterized,
similar functions
(e.g. Testers)

Iterator, Accumul,
Reuse computation
 pattern w/o

exposing local info

Compose Functions:
Flexible way to build
Complex functions
from primitives.

Higher-order funcs enable modular code
• Each part only needs local information

Funcs taking/returning funcs

Data
Structure
Library
list

Data
Structure

Client
Uses list

Provides meta-functions:
map,fold,filter

to traverse, accumulate over
lists, trees etc.
Meta-functions don’t need client
info (tester ? accumulator ?)

Uses meta-functions:
map,fold,filter

With locally-dependent funs
(lt h), square etc.

Without requiring Implement.
details of data structure

Higher-order funcs enable modular code
• Each part only needs local information

“Map-Reduce” et al.

Map-Reduce
!

Client

Provides: map, reduce
to traverse, accumulate
over WWW (“Big Data”)
Distributed across “cloud”

Web Analytics “Queries”
Clustering, Page Rank, etc

as map/reduce + ops

Map-Reduce
!

Library

Higher Order Functions
 Are Awesome...

Higher Order Functions
..but how do they work

Next: Environments & Functions

Expressions Values

Types

Lets start with the humble variable...

Variables and Bindings

Q: How to use variables in ML ?
Q: How to “assign” to a variable ?

let x = e;;

“Bind value of expr e to variable x”

!
let x = 2+2;;
val x : int = 4

Variables and Bindings

!
let x = 2+2;;
val x : int = 4
let y = x * x * x;;
val y : int = 64
let z = [x;y;x+y];;
val z : int list = [4;64;68]

Later expressions can use x
– Most recent “bound” value used for evaluation

Sounds like C/Java ?
NO!

Environments (“Phone Book”)
How ML deals with variables
• Variables = “names”
• Values = “phone number”

x 4 : int
y 64 : int
z [4;64;68] : int list

... ...

x 8 : int

Environments and Evaluation
ML begins in a “top-level” environment
• Some names bound (e.g. +,-, print_string...)

let x = e;;

ML program = Sequence of variable bindings
!
Program evaluated by evaluating bindings in order
1. Evaluate expr e in current env to get value v : t
2. Extend env to bind x to v : t
(Repeat with next binding)

Environments
“Phone book”
• Variables = “names”
• Values = “phone number”
!

1. Evaluate:
Find and use most recent value of variable
!
2. Extend:
Add new binding at end of “phone book”

Q: What is the value of res ?

(a) (0, 1)
(b) (100, 101)
(c) (0, 100)
(d) (1, 100)

let x = 0 ;;
let y = x + 1 ;;
let z = (x, y) ;;
let x = 100 ;;
let res = z ;;

!
let x = 2+2;;
val x : int = 4
!
let y = x * x * x;;
val y : int = 64
!
let z = [x;y;x+y];;
val z : int list = [4;64;68]
!
!
let x = x + x ;;
val x : int = 8

Example

x 4 : int
y 64 : int
z [4;64;68] : int list

... ...

x 4 : int
y 64 : int

... ...

x 4 : int
... ...

... ...

x 4 : int
y 64 : int
z [4;64;68] : int list

... ...

x 8 : intNew binding!

Q: What is the value of res ?

(a) (0, 1)
(b) (100,101)
(c) (0, 100)
(d) (100, 1)

let x = 0 ;;
let y = x + 1 ;;
let z a = (x, y) ;;
let x = 100 ;;
let res = z [] ;;

Environments
1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

How is it different from C/Java’s “store” ?

!
let x = 2+2;;
val x : int = 4
!
let f = fun y -> x + y;
val f : int -> int = fn
!
let x = x + x ;
val x : int = 8
!
f 0;
val it : int = 4

x 4 : int
... ...

New binding:
• No change or mutation
• Old binding frozen in f

x 4 : int
f fn <code, >: int->int

... ...

Environments
1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

!
let x = 2+2;
val : int x = 4
!

let f = fun y -> x + y;
val f : int -> int = fn
!
let x = x + x ;
val x : int = 8;
!
f 0;
val it : int = 4

x 4 : int
... ...

x 4 : int
f fn <code, >: int->int

... ...

x 8 : int

x 4 : int
f fn <code, >: int->int

... ...

How is it different from C/Java’s “store” ?

Environments
1. Evaluate: Use most recent bound value of var
2. Extend: Add new binding at end

!
let x = 2+2;
val x : int = 4
!

let f = fun y -> x + y;;
val f : int -> int = fn
!
let x = x + x ;
val x : int = 8
!
f 0;
val it : int = 4

x 4 : int
f fn <code, >: int->int

... ...

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

How is it different from C/Java’s “store” ?

Cannot change the world
Cannot “assign” to variables
• Can extend the env by adding a fresh binding
• Does not affect previous uses of variable
!
Environment at fun declaration frozen inside fun “value”
• Frozen env used to evaluate application (f e)
!
Q: Why is this a good thing ?
!
let x = 2+2;;
val x : int = 4
let f = fun y -> x + y;;
val f : int -> int = fn
let x = x + x ;;
val x : int = 8;
f 0;;
val it : int = 4

x 4 : int
f fn <code, >: int->int

... ...

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

Cannot change the world

!
Q: Why is this a good thing ?
A: Function behavior frozen at declaration

Immutability: The Colbert Principle
!

“A function behaves the same way on
Wednesday, as it behaved on Monday,

no matter what happened on Tuesday!”

Cannot change the world
!
Q: Why is this a good thing ?
A: Function behavior frozen at declaration
!
• Nothing entered afterwards affects function
• Same inputs always produce same outputs

– Localizes debugging
– Localizes reasoning about the program
– No “sharing” means no evil aliasing

Examples of no sharing
Remember: No addresses, no sharing.
• Each variable is bound to a “fresh instance” of a value !
Tuples, Lists … !
• Efficient implementation without sharing ?

• There is sharing and pointers but hidden from you
!

• Compiler’s job is to optimize code
• Efficiently implement these “no-sharing” semantics
!

• Your job is to use the simplified semantics
• Write correct, cleaner, readable, extendable systems

Q: What is the value of res ?

(a) 120
(b) 60
(c) 20
(d) 5
(d) 1

let f x = 1;;
let f x = if x<2 then 1 else (x * f(x-1));;
let res = f 5;;

Function bindings
Functions are values, can bind using val

let fname = fun x -> e ;;

Problem: Can’t define recursive functions !
• fname is bound after computing rhs value

• no (or “old”) binding for occurences of fname inside e

let rec fname x = e ;;

Occurences of fname inside e bound to “this” definition

let rec fac x = if x<=1 then 1 else x*fac (x-1)

Q: What is the value of res ?

(a) Syntax Error
(b) (10,20)
(c) (10,10)
(d) Type Error

let y = let x = 10 in
 x + x ;;
!
let res = (x, y);;

Local bindings
So far: bindings that remain until a re-binding (“global”) !
Local, “temporary” variables are useful inside functions
• Avoid repeating computations
• Make functions more readable

let x = e1 in
 e2
;;

Let-in is an expression! !
Evaluating let-in in env E:
1. Evaluate expr e1 in env E to

get value v : t
2. Use extended E [x |-> v : t]

(only) to evaluate e2

Local bindings

let
 x = 10
in
 x * x
;;

... ...

Evaluating let-in in env E:
1. Evaluate expr e1 in env E to get value v : t
2. Use extended E [x |-> v : t] to evaluate e2

x 10 : int
... ...

... ...

E

E[x:=10]

E

Let-in is an expression!

let y =
 let
 x = 10
 in
 x * x
;;

... ...

Evaluating let-in in env E:
1. Evaluate expr e1 in env E to get value v : t
2. Use extended E [x |-> v : t] to evaluate e2

x 10 : int
... ...

... ...
y 100 : int

Nested bindings

let
 x = 10
in
 (let
 y = 20
 in
 x * y)
 + x
;;

Evaluating let-in in env E:
1. Evaluate expr e1 in env E to get value v : t
2. Use extended E [x |-> v : t] to evaluate e2

... ...

x 10 : int
... ...

x 10 : int
... ...

y 20 : int

x 10 : int
... ...

... ...

Nested bindings

let
 x = 10
in
 let
 y = 20
 in
 x * y
;;

let x = 10 in
let y = 20 in
 x * y
;;

GOOD Formatting

BAD Formatting

Example

let rec filter f xs =

 match xs with

 | [] -> []

 | x::xs’ -> let ys = if f x then [x] else [] in

 let ys’ = filter f xs in

 ys @ ys’

Recap 1: Variables are names for values

• Environment: dictionary/phonebook
!

• Most recent binding used
!

• Entries never change
!

• New entries added

• let-in expression
!

• Variable “in-scope” in-expression
!

• Outside, variable not “in-scope”

Recap 2: Big Exprs With Local Bindings

Recap 3: Env Frozen at Func Definition

• Re-binding vars cannot change function
!

• Indentical I/O behavior at every call
!

• Predictable code, localized debugging

Static/Lexical Scoping

• For each occurrence of a variable,
A unique place where variable was defined!
– Most recent binding in environment
!

• Static/Lexical: Determined from program text
– Without executing the program
!

• Very useful for readability, debugging:
– Don’t have to figure out “where” a variable got assigned
– Unique, statically known definition for each occurrence

Next: Functions

Expressions Values

Types

Q: What’s the value of a function ?

Immutability: The Colbert Principle
!

“A function behaves the same way on
Wednesday, as it behaved on Monday,

no matter what happened on Tuesday!”

Functions Expressions

Two ways of writing function expressions:
!
1. Anonymous functions:
!
!
!
2. Named functions:

Body
Expr

let fname = fun x -> e

let fname x = e

fun x -> e

Parameter
(formal)

Body
Expr

Parameter
(formal)

Function Application Expressions

Application: fancy word for “call”
!

!
• Function value e1
• Argument e2
• “apply” argument e2 to function value e1

(e1 e2)

Functions Type

The type of any function is:
• T1 : the type of the “input”
• T2 : the type of the “output”

T1 -> T2

let fname = fun x -> e

T1 -> T2

let fname x = e

T1 -> T2

Functions Type

The type of any function is:
• T1 : the type of the “input”
• T2 : the type of the “output”
!
T1, T2 can be any types, including functions!
!
Whats an example of ?
• int -> int
• int * int -> bool
• (int -> int) -> (int -> int)

T1->T2

 of function application

Application: fancy word for “call”
!

!
• “apply” argument e2 to function value e1

(e1 e2)

Type

e1 : T1 -> T2 e2 : T1
(e1 e2) : T2

• Argument must have same type as “input” T1
• Result has the same type as “output” T2

Functions Values

Two questions about function values:
!
What is the value:
!
1. … of a function ?
!
2. … of a function “application” (call) ?

(e1 e2)

fun x -> e

Two questions about function values:
!
What is the value:
!
1. … of a function ?

fun x -> e

 of function = “Closure”Values

Closure =
 Code of Fun. (formal x + body e)
 + Environment at Fun. Definition

Two questions about function values:
!
What is the value:
!
1. … of a function ?

fun x -> e

 of function = “Closure”Values

Closure =
 Code of Fun. (formal x + body e)
 + Environment at Fun. Definition

Q: Which vars in closure of f ?

(a) x
(b) y
(c) x y
(d) x y z
(e) None

let x = 2 + 2 ;;
let f y = x + y ;;
let z = x + 1 ;;

 of functions: ClosuresValues

• Function value = “Closure”
– <code + environment at definition>
!

• Body not evaluated until application
– But type-checking when function is defined

!
let x = 2+2;;
val x : int = 4
let f = fun y -> x + y;;
val f : int -> int = fn
let x = x + x;;
val x : int = 8
f 0;;
val it : int = 4

x 4 : int
f fn <code, >: int->int

x 8 : int

Binding used to eval (f …)

Binding for subsequent x

(a) a y
(b) a
(c) y
(d) z
(e) y z

let a = 20;;
!
let f x =
 let y = 1 in
 let g z = y + z in
 a + (g x)
;;

Q: Which vars in closure of f ?

Environment frozen with function
!
Used to evaluate fun application
!

Which vars needed in frozen env?

let a = 20;;
!
let f x =
 let y = 1 in
 let g z = y + z in
 a + (g x)
;;
!
f 0;;

(e1 e2)

Free vs. Bound Variables

Free vs. Bound Variables

let a = 20;;
!
let f x =
 let y = 1 in
 let g z = y + z in
 a + (g x)
;;
!
f 0;;

A “free” occurrence:
• Non-bound occurrence
a is “free” inside f

Inside a function: !
A “bound” occurrence:
1. Formal variable
2. Variable bound in let-in
x, y, z are “bound” inside f

Frozen Environment
needed for values of free vars

(a) a
(b) x
(c) y
(d) z
(e) None

let a = 20;;
!
let f x =
 let a = 1 in
 let g z = a + z in
 a + (g x)
;;

Q: Which vars are free in f ?

Inside a function: !
A “bound” occurrence:
1. Formal variable
2. Variable bound in let-in-end
x, a, z are “bound” inside f !
A “free” occurrence:
Not bound occurrence
nothing is “free” inside f

Free vs. Bound Variables

let a = 20;;
!
let f x =
 let a = 1 in
 let g z = a + z in
 a + (g x)
 ;;
!
f 0;

Bound values determined when
function is evaluated (“called”)
• Arguments
• Local variable bindings

let a = 20;;
!
let f x =
 let a = 1 in
 let g z = a + z in
 a + (g x)
 ;;
!
f 0;

Where do bound-vars values come from?

Two questions about function values:
!
What is the value:
!
1. … of a function ?
!
2. … of a function “application” (call) ?

(e1 e2)

fun x -> e

 of function applicationValues

“apply” the argument e2 to the (function) e1

 of function applicationValues

1. Find closure of e1
2. Execute body of closure with param e2
!

Free values found in closure-environment
!
Bound values by executing closure-body

(e1 e2)Value of a function “application” (call)

 of function applicationValues

1. Evaluate e1 in current-env to get (closure)
 = code (formal x + body e) + env E
!
2. Evaluate e2 in current-env to get (argument) v2
!
3. Evaluate body e in env E extended with x := v2

(e1 e2)Value of a function “application” (call)

(a) 4 (b) 5 (c) 6 (d) 11 (e) 12

let x = 1;;
let y = 10;;
let f y = x + y;;
let x = 2;;
let y = 3;;
let res = f (x + y);;

Q: What is the value of res ?

Q: What is the value of res ?

let x = 1;;
let y = 10;;
let f y = x + y;;
let x = 2;;
let y = 3;;
let res = f (x + y);;

f |-> formal:= y
 body := x + y
 env := [x|->1]

Application: f (x + y)
Eval body in env extended with formal|-> 5
Eval x+y in [x|->1, y|->5] ====> 6

x |-> 2

y |-> 3

x + y ====> 5

let x = 1;;
let f y =
 let x = 2 in
 fun z -> x + y + z
;;
let x = 100;;
let g = f 4;;
let y = 100;;
(g 1);;

Example

Q: Closure value of g?
!
formal z
body x + y + z
env [x|->2, y|->4]

Eval body in env extended with formal|-> 1
Eval x+y+z in [x|->2, y|->4,z|->1] ====> 7

let f g =
 let x = 0 in
 g 2
;;
!
let x = 100;;
!
let h y = x + y;;
!
let res = f h;;

Q: What is the value of res ?

(a) Syntax Error
(b) 102
(c) Type Error
(d) 2
(e) 100

Example 3
let f g =
 let x = 0 in
 g 2
;;
!
let x = 100;;
!
let h y = x + y;;
!
f h;;

Static/Lexical Scoping

• For each occurrence of a variable,
– Unique place in program text where variable defined
– Most recent binding in environment
!

• Static/Lexical: Determined from the program text
– Without executing the program
!

• Very useful for readability, debugging:
– Don’t have to figure out “where” a variable got assigned
– Unique, statically known definition for each occurrence

Immutability: The Colbert Principle
!

“A function behaves the same way on
Wednesday, as it behaved on Monday,

no matter what happened on Tuesday!”

