
1

CSE 237A
Middleware and Operating Systems

Tajana Simunic Rosing
Department of Computer Science and Engineering
University of California, San Diego.

2TSR

Software components
Standard software
e.g. MPEGx, databases
Middleware
Operating systems
schedulers

3TSR

Middleware
 Between applications and OS
 Provides a set of higher-level capabilities and

interfaces
 Customizable, composeable frameworks
 Types of services:

 component – independent of other services
 E.g. communication, information, computation

 integrated sets
 e.g. distributed computation environment

 integration frameworks
 Tailor to specific domain: e.g. transaction processing

4TSR

Integrated sets
 A set of services that take significant

advantage of each other
 Example: Distributed Computing

Environment (DCE)
Provides key distributed technologies – RPC,

DNS, distributed file system, time synch,
network security and threads service

From Open SW Foundation, supported by
multiple architectures and major SW vendors

5TSR

DCE

6TSR

Integration frameworks middleware

 Integration environments tailored to
specific domain

 Examples:
Workgroup framework
Transaction processing framework
Network management framework
Distributed object computing (e.g. CORBA, E-

SPEAK, JINI, message passing)

7TSR

Distributed Object Computing
 Advantages:

 SW reusability, more abstract programming, easier coordination
among services

 Issues:
 latency, partial failure, synchronization, complexity

 Techniques:
 Message passing (object knows about network)
 Argument/Return Passing – like RPC

 network data = args + return result + names
 Serialzing and sending

 network data = obj code + obj state + synch info
 Shared memory

 network data = data touched + synch info

8TSR

SW for access to remote objects
CORBA (Common Object Request Broker Architecture).
Information sent to Object Request Broker (ORB) via local stub.
ORB determines location to be accessed and sends information
via the IIOP I/O protocol.

Access times not predictable.OBJ management architecture

9TSR

Real-time CORBA
End-to-end predictability of timeliness in a
fixed priority system.
respecting thread priorities between client
and server for resolving resource contention,
bounding the latencies of operation
invocations.
RT-CORBA includes provisions for
bounding the time during which priority
inversion due to competing resource access
may occur.

10TSR

Message passing interface

Message passing interface (MPI): alternative
to CORBA

MPI/RT: a real-time version of MPI [MPI/RT
forum, 2001].

MPI-RT does not cover issues such as thread
creation and termination.

MPI/RT is conceived as a layer between the
operating system and non real-time MPI.

11

CSE 237A
Real Time Operating Systems

Tajana Simunic Rosing
Department of Computer Science and Engineering
University of California, San Diego.

12TSR

Software components
Standard software
e.g. MPEGx, databases
Middleware
Operating systems
Focus on RTOS

13TSR

Real-time operating systems

Three key requirements
1. Predictable OS timing behavior

 upper bound on the execution time of OS services
 short times during which interrupts are disabled,
 contiguous files to avoid unpredictable head

movements
2. OS must be fast
3. OS must manage the timing and scheduling

 OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

 OS must provide precise time services with high
resolution.

14TSR

RTOS-Kernels
Distinction between real-time kernels and modified

kernels of standard OSes.

Distinction between
general and RTOSes for specific domains,
standard APIs (e.g. POSIX RT-Extension of Unix)

or proprietary APIs.

15TSR

How to organize multiple tasks?
 Cyclic executive (Static table driven scheduling)

 static schedulability analysis
 resulting schedule or table used at run time

 Event-driven non-preemptive
 tasks are represented by functions that are handlers for events
 next event processed after function for previous event finishes

 Static and dynamic priority preemptive scheduling
 static schedulability analysis
 at run time tasks are executed “highest priority first”
 Rate monotonic, deadline monotonic, earliest deadline first, least

slack

16TSR

RTOS Organization:
Cyclic Executive

Kernel Mode

Device
Drivers

Network
Drivers

Hardware

I/O Services

TCP/IP
Stack

Application Application Application

17TSR

RTOS Organization:
Monolithic Kernel

User Mode
(protected)

Kernel Mode
Filesystems

Device
Drivers

Network
Drivers

Hardware

I/O Managers Graphics
Subsystem

Graphics
Drivers Other….

Application Application Application

Hardware Interface Layer

18TSR

RTOS Organization:
Microkernel

User Mode
(protected)

Kernel Mode

Device
Drivers

Network
Drivers H

a
r
d
w
a
r
eFilesystem

Manager

Graphics
Drivers

Application

Application

Application

Filesystem
Drivers

Device
Manager

Photon

Network
Manager

Kernel (tiny)

19TSR

Types of RTOS Kernels
1. Fast proprietary kernels

 designed to be fast, rather than predictable
 Inadequate for complex systems
 Examples include

QNX, PDOS, VCOS, VTRX32, VxWORKS.

20TSR
© Windriver

Example: VxWorks

21TSR

VxWorks Configuration

© Windriver

ht
tp

://
w

w
w

.w
in

dr
iv

er
.c

om
/p

ro
du

ct
s/

de
ve

lo
pm

en
t_

to
ol

s/
id

e/
to

rn
ad

o2
/to

rn
ad

o_
2_

ds
.p

df

22TSR

Types of RTOS Kernels
2. Standard OS with real-time extensions
 RT-kernel running all RT-tasks.
 Standard-OS executed as one task.

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

23TSR

Example: RT-Linux

Hardware

RT-Task RT-Task

RT-Linux RT-Scheduler

Linux-Kernel
driver

scheduler

Init Bash Mozilla

interrupts

interrupts

interrupts

I/O

24TSR

Example: Posix 1.b RT
 Standard scheduler can be replaced by POSIX

scheduler implementing priorities for RT tasks

Hardware

Linux-Kernel
driver

POSIX 1.b scheduler

Init Bash Mozilla

I/O, interrupts

RT-Task RT-Task
 Special RT &

standard OS
calls available.

 Easy
programming,
no guarantee
for meeting
deadline

25TSR

Types of RTOS Kernels
3. Research systems

 Research issues
 low overhead memory protection,
 temporal protection of computing resources
 RTOSes for on-chip multiprocessors
 support for continuous media
 quality of service (QoS) control.

26TSR

Kernel examples
 Small kernels
PALOS, TinyOS

 Medium size
uCos II, eCos

 Larger
RT Linux, WinCE

27TSR

Example I: PALOS
 Structure – PALOS Core, Drivers, Managers, and user defined Tasks
 PALOS Core

 Task control: slowing, stopping, resuming
 Periodic and aperiodic handling and scheduling
 Inter-task Communication via event queues
 Event-driven tasks: task routine processes events stored in event queues

 Drivers
 Processor-specific: UART, SPI, Timers..
 Platform-specific: Radio, LEDs, Sensors

 Small Footprint
 Core (compiled for ATMega128L) Code Size: 956 Bytes , Mem Size: 548 Bytes
 Typical(3 drivers, 3 user tasks) Code Size: 8 Kbytes, Mem Size: 1.3 Kbytes

28TSR

Execution control in PALOS
 Each task has a task

counter
 Counters initialized to:

 0: normal
 >>:0 slowdown
 -1: stop
 >=0: restart

 Decremented
1) every iteration

(relative timing)
2) by timer interrupts

(exact timing)
 If counter = 0, call taks;

reset counter to
initialization value

29TSR

Event Handlers in PALOS

 Periodic or
aperiodic events
can be scheduled
using Delta Q and
Timer Interrupt

 When event expires
appropriate event
handler is called

30TSR

Example II: TinyOS
 System composed of

 scheduler, graph of components, execution context
 Component model

 Basically FSMs
 Four interrelated parts of implementation

 Encapsulated fixed-size frame (storage)
 A set of command & event handlers
 A bundle of simple tasks (computation)

 Modular interface
 Commands it uses and accepts
 Events it signals and handles

 Tasks, commands, and event handlers
 Execute in context of the frame & operate on its state
 Commands are non-blocking requests to lower level

components
 Event handlers deal with hardware events
 Tasks perform primary work, but can be preempted by

events
 Scheduling and storage model

 Shared stack, static frames
 Events prempt tasks, tasks do not
 Events can signal events or call commands
 Commands don’t signal events
 Either can post tasks

Messaging Component

Internal StateInternal Tasks

Commands Events

31TSR

TinyOS Overview
 Stylized programming model with extensive static information

 Compile time memory allocation
 Easy migration across h/w -s/w boundary
 Small Software Footprint - 3.4 KB
 Two level scheduling structure

 Preemptive scheduling of event handlers
 Non-preemptive FIFO scheduling of tasks
 Bounded size scheduling data structure

 Rich and Efficient Concurrency Support
 Events propagate across many components
 Tasks provide internal concurrency

 Power Consumption on Rene Platform
 Transmission Cost: 1 µJ/bit
 Inactive State: 5 µA
 Peak Load: 20 mA

 Efficient Modularity - events propagate through stack <40 µS

32TSR

Complete TinyOS Application

Ref: from Hill, Szewczyk et. al., ASPLOS 2000

33TSR

Example III: µCOS-II
 Portable, ROMable, scalable, preemptive,

multitasking RTOS
 Services

 Semaphores, event flags, mailboxes, message queues,
task management, fixed-size memory block
management, time management

 Source freely available for academic non-
commercial usage for many platforms
 Value added products such as GUI, TCP/IP stack etc.

34TSR

Example IV: eCos
 Embedded, Configurable OS, Open-source
 Several scheduling options

 bit-map scheduler, lottery scheduler, multi-level scheduler
 Three-level processing

 Hardware interrupt (ISR), software interrupt (DSR), threads
 Inter-thread communication

 Mutex, semaphores, condition variables, flags, message box
 Portable - Hardware Abstraction Layer (HAL)
 Based on configurable components

 Package based configuration tool
 Kernel size from 32 KB to 32 MB
 Implements ITRON standard for embedded systems
 OS-neutral POSIX compliant EL/IX API

35TSR

Example V: Real-time Linux
 Microcontroller (no MMU) OSes:

 uClinux - small-footprint Linux (< 512KB kernel) with full
TCP/IP

 QoS extensions for desktop:
 Linux-SRT and QLinux

 soft real-time kernel extension
 target: media applications

 Embedded PC
 RTLinux, RTAI

 hard real time OS
 E.g. RTLinux has Linux kernel as the lowest priority task in a RTOS

 fully compatible with GNU/Linux
 HardHat Linux

36TSR

Example VI: WinCE

OEM hardware

OAL
bootload drivers Device

drivers
File

drivers
Network
drivers

Kernel
library GWES Device

manager
File

manager IrDA TCP/IP

Win32 APIs

WinCE shell services

Embedded shell
Remote connectivity

Applications

37TSR

Virtual memory
 WinCE uses virtual memory.
 Code can be paged from ROM, etc.
 WinCE suports a flat 32-bit virtual address

space.
 Virtual address may be:

 Statically mapped (kernel-mode code).
 Dynamically mapped (user-mode and some kernel-

mode code).
 Address space: bottom half user, top kernel

38TSR

Driver structure
 Driver = DLL with particular interface points.
 Hosted by a device manager process space
 Handle interrupts by dedicated IST thread.
 Synchronize driver and application via critical

sections and MUTEXes.

39TSR

Device manager
 Always-running user-level process.
 Contains the I/O Resource Manager.
 Loads the registry enumerator DLL which in turn

loads drivers.
 RegEnum scans registry, loads bus drivers.
 Bus driver scans bus, locates devices.
 Searches registry for device information.
 Loads appropriate drivers.
 Sends notification that interface is available.

 Provides power notification callbacks.

40TSR

Interrupt handling
 Interrupt service routine (ISR):

 Kernel mode service.
 May be static or installable.

 Interrupt service thread (IST):
 User mode thread.

All higher
enabled

All enabled
Except ID All enabled

ISH Set event Enable ID

ISR ISR

ISR ISR

IST processing

device

41TSR

Kernel scheduler
 Two styles of preemptive multitasking.

 Thread runs until end of quantum.
 Thread runs until higher priority thread is ready to run.

 Round-robin within priority level.
 Quantum is defined by OEM and application.
 Priority inheritance to control priority inversion.
 256 total priorities.

 Top 248 can be protected by the OEM.

42TSR

Summary
 SW
MPEG decode etc.

 Middleweare
E.g DCE, CORBA

 RTOS
E.g TinyOS, eCos, RT-Linux, WinCE

43TSR

Sources and References

 Peter Marwedel, “Embedded Systems
Design,” 2004.

 Wayne Wolf, “Computers as
Components,” Morgan Kaufmann, 2001.

 Nikil Dutt @ UCI
 Mani Srivastava @ UCLA

	CSE 237A �Middleware and Operating Systems
	Software components
	Middleware
	Integrated sets
	DCE
	Integration frameworks middleware
	Distributed Object Computing
	SW for access to remote objects
	Real-time CORBA
	Message passing interface
	CSE 237A �Real Time Operating Systems
	Software components
	Real-time operating systems
	RTOS-Kernels
	How to organize multiple tasks?
	RTOS Organization: �Cyclic Executive
	RTOS Organization: �Monolithic Kernel
	RTOS Organization: Microkernel
	Types of RTOS Kernels�1. Fast proprietary kernels
	Example: VxWorks
	VxWorks Configuration
	Types of RTOS Kernels�2. Standard OS with real-time extensions
	Example: RT-Linux
	Example: Posix 1.b RT
	Types of RTOS Kernels�3. Research systems
	Kernel examples
	Example I: PALOS
	Execution control in PALOS
	Event Handlers in PALOS
	Example II: TinyOS
	TinyOS Overview
	Complete TinyOS Application
	Example III: µCOS-II
	Example IV: eCos
	Example V: Real-time Linux
	Example VI: WinCE
	Virtual memory
	Driver structure
	Device manager
	Interrupt handling
	Kernel scheduler
	Summary
	�Sources and References

