

The appearance of colors

- Color appearance is strongly affected by (at least):
- Spectrum of lighting striking the retina
- other nearby colors (space)
- adaptation to previous views (time)
- "state of mind"

Color matching functions

- Choose primaries, say $P_{1}(\lambda), P_{2}(\lambda), P_{3}(\lambda)$
- For monochromatic (single wavelength) energy function, what amounts of primaries will match it?
- i.e., For each wavelength λ, determine how much of A , of B , and of C is needed to match light of that wavelength alone.
$a(\lambda)$
$b(\lambda)$
$c(\lambda)$
- These are color matching functions

CSE152, Spr $2010 \quad 645.2 \mathrm{~nm}, 526.3 \mathrm{~nm}, 444.4 \mathrm{~nm}$

Basic Steps

1. Labeling pixels as foreground/background $(0,1)$.
2. Morphological operators (sometimes)
3. Find pixels corresponding to a region
4. Compute properties of each region
\qquad

How do we select a Threshold?

- Manually determine threshold experimentally.
- Good when lighting is stable and high contrast.
- Automatic thresholding
- P-tile method
- Mode method
- Peakiness detection
- Iterative algorithm

P-Tile Method

If the size of the object is approx. known, pick T s.t. the area under the histogram corresponds to the size of the object:

Mode Method

- Model intensity in each region R_{i} as
"constant" $+\mathrm{N}\left(0, \mathrm{\sigma}_{\mathrm{i}}\right)$:

$$
\text { If }(x, y) \in R_{i} \text { then, } I(x, y)=\mu_{i}+n_{i}(x, y)
$$

$$
p\left(n_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\frac{1}{2} \frac{n_{i}^{2}}{\sigma_{i}^{2}}}
$$

$$
E\left(n_{i}\right)=0 \quad E\left(n_{i}^{2}\right)=\sigma_{i}^{2}
$$

CSE152, Spr 2010
[From Octavia Camps]

"Peakiness" Detection Algorithm

- Find the two highest local maxima at a MINIMUM DISTANCE APART: g_{i} and g_{j}
- Find lowest point between them: g_{k}
- Measure "peakiness":
$-\min \left(\mathrm{H}\left(\mathrm{g}_{\mathrm{i}}\right), \mathrm{H}\left(\mathrm{g}_{\mathrm{j}}\right)\right) / \mathrm{H}\left(\mathrm{g}_{\mathrm{k}}\right)$
- Find $\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}, \mathrm{g}_{\mathrm{k}}\right)$ with highest peakiness

Finding the peaks and valleys

- It is a not trivial problem:

CSE152, Spr 2010
[From Octavia Camps] Intro Computer Vision

What is a region?

- "Maximal connected set of points in the image with same brightness value" (e.g., 1)
- Two points are connected if there exists a continuous path joining them.
- Regions can be simply connected (For every pair of points in the region, all smooth paths can be smoothly and continuously deformed into each other). Otherwise, region is multiply connected (holes)

Problem of $4 / 8$ Connectedness

- 8 Connected:
- 1's form a closed curve, but background only forms one region.
- 4 Connected
- Background has two regions, but ones form four "open" curves (no closed curve)

Jordan Curve Theorem

- "Every closed curve in R^{2} divides the plane into two region, the 'outside' and 'inside' of the curve."
- What the connected regions in this binary image?
- Which regions are contained within which region?

CSE152, Spr 2010

To achieve consistency w.r.t. Jordan Curve Theorem

1. Treat background as 4-connected and foreground as 8 connected.
2. Use 6-connectedness

CSE152, Spr 2010

Some notes

- Once labeled, you know how many regions (the value of Marker)
- From Mark matrix, you can identify all pixels that are part of each region (and compute area)
- How deep does stack go?
- Iterative algorithms (See reading from Horn)
- Parallel algorithms

CSE152, Spr 2010 \qquad Intro Computer Vision

Some notes

- How deep does stack go?
- Iterative algorithms (See reading from Horn)
- Parallel algorithms

Properties extracted from binary image

- A tree showing containment of regions
- Properties of a region

1. Genus - number of holes
2. Centroid
3. Area
4. Perimeter
5. Moments (e.g., measure of elongation)
6. Number of "extrema" (indentations, bulges)
7. Skeleton

Central Moments

Given a pair of non-negative integers (j, k) the central $(\mathrm{j}, \mathrm{k})^{\text {th }}$ moment of S is given by:

$$
\mu_{j k}(S)=\sum_{(x, y) \in S}(x-\bar{x})^{j}(y-\bar{y})^{k}
$$

Area: Moment M_{00}	
\wedge ¢ $S=\{(x, y) \mid f(x, y)=1\}$	
	$(S)=\sum_{(x, y) \in S} x^{j} y^{k}$
Example:$M_{o o}(S)=\sum_{(x, y) \in S} x^{0} y^{0}=\sum_{(x, y) \in S} 1=\#(S)$	
Area of S !!	
$M_{0,0}=\sum_{x=1}^{n} \sum_{y=1}^{m} B(x, y)$	- Fast way to implement computation over n by m image or window - One object

 Recognition could be done by comparing moments
 However, moments M_{jk} are not invariant under:
 -Translation
 - Scaling
 -Rotation
 -Skewing
 Shape recognition by Moments
 $?$ $=$
 Intro Computer Vision

Given a pair of non-negative integers (j, k) the normalized $(\mathrm{j}, \mathrm{k})^{\text {th }}$ moment of S is given by:
$m_{j k}(S)=\sum_{(x, y) \in S}\left(\frac{x-\bar{x}}{\sigma_{x}}\right)^{j}\left(\frac{y-\bar{y}}{\sigma_{y}}\right)^{k}$
CSE152, Spr 2010
Intro Computer Vision

Region Orientation from

Second Moment Matrix

(\bar{x}, \bar{y})

- Second Centralized Moment Matrix

$$
\left[\begin{array}{ll}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{array}\right]
$$

- Eigenvectors of Moment Matrix give orientation

