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Going back to techniques

Proof-system 
search ( � � � � )

Interpretation 
search ( ���� ) Quantifiers

Equality

Decision

procedures

Induction

Cross-cutting aspectsMain search strategy

• E-graph

• Today: rewrite rules
Communication between 
decision procedures and 

between prover and decision 

procedures

• DPLL
• Backtracking

• Incremental SAT

Matching

• Natural 

deduction
• Sequents

• Tactics & 

Tacticals
• Resolution

Next class

Rewrite rules

Equality

• We’ve seen one way of dealing with equality in 
this class: the E-graph

• Another way to deal with equalities is to treat 

them as rewrite rules

• An equality a = b can be used either as the 
rewrite rule a → b or b → a

Plan

• First, we’ll see how rewrite rules are used in a 
few system

– We’ll see some of the issues that come up

• Then we’ll dig into the details

– Formal foundations: rewrite systems

• This is a huge area of work and research

– We’ll see the snowflake on the tip of the iceberg

Rewrite rules in resolution

• Show that the following is unsat:

– { P(1), ¬ P(f(0)), f(0) = 1 }

Rewrite rules in resolution

• Show that the following is unsat:

– { P(1), ¬ P(f(0)), f(0) = 1 }

• This technique is called demodulation
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Resolution: another example

• Show that the following is unsat:

– { P(0), ¬ P(f(0)), f(0) = 0 }

Resolution: another example

• Show that the following is unsat:

– { P(0), ¬ P(f(0)), f(0) = 0 }

• Which direction to pick

– In the first example, can choose f(1) → 1 or 1 → f(1)

– In the second example, pick f(0) → 0

• Termination issues are cropping up

Rewrite rules in ACL2

• Recall ACL2 architecture:

– Given a goal formula, try to apply various techniques 

in turn. Each technique generates sub-goals. Recurse
on sub-goals.

• Techniques:

– Simplification

– Instantiating known theorems

– Term rewriting

– As a last resort, induction

Rewrite rules in ACL2

• Rewrite rules in ACL2 are guarded

• A rewrite rule is a lemma of the form:

– h1 ∧ … ∧ hn ⇒ a = b

• Here again, must pick a direction for the equality

– Try to rewrite more “complicated” terms to “simpler”
terms

Rewrite rules in ACL2

• ACL2 also uses local equality assumptions for 
performing rewrites

• If lhs = rhs appears as a hypothesis in the goal, 

then replace lhs with rhs in rest of goal

• Boyer and Moore call this cross-fertilization

• More local than having rewrite lemmas

Performance issues

• Heuristics for termination

– Decreasing measure (guarantees termination 

“statically”)

– Detect infinite loops and stop (can detect loops in the 

terms, or loops in the application of rules)

– Or just have a timeout

• One can also cache the results of rewriting

– Rewriting can be expensive
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Moving to the formal details…

• We’ve seen some intuition for where to use 
rewrite rules

• Now, let’s see some of the details

• Rewrite rules have been studied in the context of 
term rewrite systems, which to are just sets of 

rewrite rules 

Term rewrite systems

• A term rewrite system is a pair (T, R) , where T 
is a set of terms and R is a set of rewrite rules of 
the form l1 → l2

• T should actually be an algebra signature, but 
for our purposes, thinking of T as a set of terms 

is good enough

• Rewrite rules can have free variables, but 

variables on the rhs must be a subset of 
variables on the lhs

Example

0 + y → y

s(x) + y → s(x + y)

fib(0) → 0

fib(s(0)) → s(0)

fib(s(s(x))) → fib(s(x)) + fib(x)

• Run on: fib(s(s(s(0)))

Example

0 + y → y

s(x) + y → s(x + y)

fib(0) → 0

fib(s(0)) → s(0)

fib(s(s(x))) → fib(s(x)) + fib(x)

• Run on: fib(s(s(s(0)))

A single rewrite step

• We write t1 → t2 to mean that term t1 rewrites to 

term t2
– s(0 + s(0)) → s(s(0))

• Notice that the rewrite rule can be applied to a 

sub-term!

• We need a way to formalize this

Contexts

• A context C[·] is a term with a “hole” in it:

– C[·] = s(0 + ·)

• The whole can be filled:

– C[s(0)] = s(0 + s(0))

• When we write t1 = C[t2] , it means that term t2
appears inside t1, and C is the context inside 

which t2 appears
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A single rewrite step

• t1 → t2 iff there exists a context C, and a rewrite 
rule l1 → l2 such that:

A single rewrite step

• t1 → t2 iff there exists a context C, and a rewrite 
rule l1 → l2 such that:

– t1 = C[l1] 

– t2 = C[l2]

• Can we show:

– s(0 + s(0)) → s(s(0))

– from rewrite rule s(x) + y → s(x + y)

A single rewrite step

• t1 → t2 iff there exists a context C, a term t, a 

substitution θ, and a rewrite rule l1 → l2 such 

that:

A single rewrite step

• t1 → t2 iff there exists a context C, a term t, a 

substitution θ, and a rewrite rule l1 → l2 such 

that:

– t1 = C[t] 

– θ = unify(l1, t)

– t2 = C[θ( l2)]

Transitive closure of rewrites

• →* is the reflexive transitive closure of →

• Another way to say the same: we write t1 →
* t2 to 

mean that there exists a possibly empty 

sequence s0 … sn such that:

– t1 → s0 → … → sn → t2

Termination

• An term t is in normal form or is irreducible if 
there is no term t’ such that t → t’

• A rewrite system (T, R) is normalizing (also 
called weakly normalizing) if every t ∈ T has a 
normal form

• A rewrite system (T,R) is terminating (also called 
strongly normalizing) if there is no term t ∈ T that 
will rewrite forever

• What is the difference between strong and weak 
normalization?
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Termination

• One technique for showing termination: assign a 
measure to each term, and show that rewrite 

rules strictly decrease the measure

• Example:

s(p(x)) → x

p(s(x)) → x

minus(0) → 0

minus(s(x)) → p(minus(x))

Termination

• Termination guarantees normalization

• However, it does not guarantee that there is a 
unique normal form for a given term

• We would like to have this additional uniqueness 
property

• Confluence is the additional property we need

Confluence

• Local confluence: for all terms 
a,b and c, if a → b and a → c, 
then there exists a term d such 
that b→* d and c →* d

a

b c

d* *

Confluence

• Local confluence: for all terms 
a,b and c, if a → b and a → c, 
then there exists a term d such 
that b→* d and c →* d

a

b c

d

• Global confluence: for all terms 
a,b and c, if a → * b and a →* c, 
then there exists a term d such 
that b→* d and c →* d

* *

a

b c

d* *

**

Confluence

• Local confluence: for all terms 
a,b and c, if a → b and a → c, 
then there exists a term d such 
that b→* d and c →* d

a

b c

d

• Global confluence: for all terms 
a,b and c, if a → * b and a →* c, 
then there exists a term d such 
that b→* d and c →* d

* *

a

b c

d* *

**

when there exists a d such that b →* d 

and c →* d, we say that b and c are 

joinable

Relation between local and global 

• Theorem: for a terminating system, local 
confluence implies global confluence

• Proof by picture…
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Proof by picture Proof by picture

Canonical systems

• A terminating and confluent system is canonical, 
meaning that each term has a unique canonical 

form

• Simple decision procedure for such systems

• To determine t1 = t2:

Canonical systems

• A terminating and confluent system is canonical, 
meaning that each term has a unique canonical 

form

• Simple decision procedure for such systems:

• To determine t1 = t2:

Determining confluence

• We would like an algorithm for determining 
whether a terminating system is confluent

• To do this, we need to define the notion of 

critical pair

Critical pairs

• Let l1 → r1 and l2 → r2 be rewrite rules that have 

no variables in common (rename vars if needed)

• Suppose l1 = C[t] such that t is a non-trivial term 

(not a variable), and such that θ = unify(t,l2)

• Then (θ(C[r2]),θ(r1)) is a critical pair

• The intuition is that a critical pair represents a 
choice point: given a term l1=C[l2], we can either 
apply l1 → r1 to get r1, or we can apply l2 → r2 to 

get C[r2]
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Critical pairs: example

b(w(x)) → w(w(w(b(x))))

w(b(y)) → b(y)

b(b(z)) → w(w(w(w(z))))

Critical pairs: example

b(w(x)) → w(w(w(b(x))))

w(b(y)) → b(y)

b(b(z)) → w(w(w(w(z))))

Critical pairs: another example

s(p(x)) → x

p(s(x)) → x

minus(0) → 0

minus(s(x)) → p(minus(x))

Critical pairs: another example

s(p(x)) → x

p(s(x)) → x

minus(0) → 0

minus(s(x)) → p(minus(x))

Critical pairs

• Theorem: A term rewrite system is locally 
confluent if and only if all its critical pairs are 

joinable

• Recall the meaning of joinable: b and c are 
joinable if there exists a d such that b →* d and c 

→* d

• Corollary: A terminating rewrite system is 

confluent if and only if all its critical pairs are 
joinable

Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR
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Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• For each pair (s,t) ∈ CR:

– Find all the normal forms of s and t

– Note: s and t are guaranteed to have normal forms 
because the system is terminating. 

Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• For each pair (s,t) ∈ CR:

– Find all the normal forms of s and t

Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• For each pair (s,t) ∈ CR:

– Find all the normal forms of s and t

– Let NS be the set of normal forms of s and NT be the 
set of normal forms of t 

Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• For each pair (s,t) ∈ CR:

– Find all the normal forms of s and t

– Let NS be the set of normal forms of s and NT be the 
set of normal forms of t 

– If sizeof(NS) > 1 or sizeof(NT) > 1 return “NOT 
CONFLUENT”

– (more than one normal form implies NOT confluent 
since confluence would imply unique normal form)

Algorithm for deciding confluence

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• For each pair (s,t) ∈ CR:

– Find all the normal forms of s and t

– Let NS be the set of normal forms of s and NT be the 
set of normal forms of t 

– If sizeof(NS) > 1 or sizeof(NT) > 1 return “NOT 
CONFLUENT”

– If NS and NT are disjoint, return “NOT CONFLUENT”

• Return “CONFLUENT”

What if the system is not confluent?
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What if the system is not confluent?

• If we find a critical pair such that the normal 
forms are disjoint, add additional rewrite rules

• This is called the Knuth-Bendix completion 

procedure

Knuth-Bendix completion procedure

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• While there exists a critical pair (s,t) ∈ CR such 

that the normal forms NS of s and the normals
forms NT of t are disjoint:

– For each s’ in NS, and for each term t’ in NT, add the 
rewrite rule s’ → t’

Knuth-Bendix completion procedure

• Given a terminating rewrite system, find all 
critical pairs, and call this set CR

• While there exists a critical pair (s,t) ∈ CR such 

that the normal forms NS of s and the normals
forms NT of t are disjoint:

– For each s’ in NS, and for each term t’ in NT, add the 
rewrite rule s’ → t’

• Subtlety: should we add s’ → t’, or t’ → s’? 

• Completion algorithm also takes a “reduction order” as an 

argument
• Algorithm fails if s’ and t’ have the same reduction order

Knuth-Bendix completion procedure

• Three possible outcomes:

– Terminates with success, yielding a terminating 

confluent rewrite system that is equivalent to the 
original rewrite system (in terms of equalities that are 
provable)

– Terminate with a failure

– Does not terminate

Example

s(p(x)) → x

p(s(x)) → x

minus(0) → 0

minus(s(x)) → p(minus(x))

Example

s(p(x)) → x

p(s(x)) → x

minus(0) → 0

minus(s(x)) → p(minus(x))


