« Backtracking
« Incremental SAT

Next class

Going back to techniques

Main search strategy

« Natural
deduction
* Sequents
« Tactics &
Tacticals
« Resolution

|
Cross-cutting|aspects

« DPLL Matching /

« E-graph Communication between

« Today: rewrite rules decision procedures and
between prover and decision
procedures

Rewrite rules

Equality

Plan

» We've seen one way of dealing with equality in
this class: the E-graph

« Another way to deal with equalities is to treat
them as rewrite rules

» An equality a = b can be used either as the
rewrite rulea - borb — a

« First, we’ll see how rewrite rules are used in a
few system
— We'll see some of the issues that come up

« Then we'll dig into the details
— Formal foundations: rewrite systems

» This is a huge area of work and research
— We'll see the snowflake on the tip of the iceberg

Rewrite rules in resolution

Rewrite rules in resolution

» Show that the following is unsat:
- {P(1), = P((0)), f(0) = 1} ({a's = |
0 > o)

» Show that the following is unsat:
- {P(1), = P((0)), f(0) = 1}

 This technique is called demodulation

Resolution: another example

» Show that the following is unsat:
- {P(0), = P(f(0)), f(0) = 0 } o—>fce)

QXS

Resolution: another example

» Show that the following is unsat:
- { P(0), = P(f(0)), f(0) = 0 }

» Which direction to pick
— In the first example, can choose f(1) — 1 or 1 — f(1)
— In the second example, pick f(0) — 0

» Termination issues are cropping up

Rewrite rules in ACL2

Recall ACL2 architecture:

— Given a goal formula, try to apply various techniques
in turn. Each technique generates sub-goals. Recurse
on sub-goals.

» Techniques:
— Simplification
— Instantiating known theorems
— Term rewriting
— As a last resort, induction

Rewrite rules in ACL2

» Rewrite rules in ACL2 are guarded
* A rewrite rule is a lemma of the form:
- hA..Ah,= a=b

» Here again, must pick a direction for the equality

— Try to rewrite more “complicated” terms to “simpler”
terms

Rewrite rules in ACL2

» ACL2 also uses local equality assumptions for
performing rewrites

« If hs = rhs appears as a hypothesis in the goal,
then replace lhs with rhs in rest of goal

» Boyer and Moore call this cross-fertilization

» More local than having rewrite lemmas

Performance issues

» Heuristics for termination

— Decreasing measure (guarantees termination
“statically”)

— Detect infinite loops and stop (can detect loops in the
terms, or loops in the application of rules)

— Or just have a timeout

» One can also cache the results of rewriting
— Rewriting can be expensive

Moving to the formal details...

Term rewrite systems

* We've seen some intuition for where to use
rewrite rules

* Now, let's see some of the details

» Reuwrite rules have been studied in the context of
term rewrite systems, which to are just sets of
rewrite rules

» A term rewrite system is a pair (T, R) , where T
is a set of terms and R is a set of rewrite rules of
the form I; — |,

» T should actually be an algebra signature, but
for our purposes, thinking of T as a set of terms
is good enough

» Rewrite rules can have free variables, but
variables on the rhs must be a subset of
variables on the lhs

Example

Example

O+y—y

S(X) +y = s(x+Y)

fib(0) — 0

fib(s(0)) — s(0)

fib(s(s(x))) — fib(s(x)) + fib(x)

* Run on: fib(s(s(s(0))) fa(v) = 2
el 4(4@)’)‘ t 8l ace))
ot fop + 4 (0)

8(0) + 0 + A(o)

A+ Af)
Alo+ AL)) A(A(a)

O+y—y

S(X) +y = s(x+Y)

fib(0) — 0

fib(s(0)) — s(0)

fib(s(s(x))) — fib(s(x)) + fib(x)

* Run on: fib(s(s(s(0))) fr(¥) =12

X
(e (hggy) « it (0o))
§L06)F i (o) + Alo)
A w9t Alo)
A+ Al

A0~ Af0)
AMA(]) = 0

A single rewrite step

Contexts

* We write t; — t, to mean that term t; rewrites to
term t,
— s(0 + s(0)) — s(s(0))

zi Notice that the rewrite rule can be applied to a
sub-term!

» We need a way to formalize this

» A context C[-] is a term with a “hole” in it:
-C[]=s(0+")

» The whole can be filled:
- C[s(0)] = s(0 + s(0))

* When we write t; = C[t,] , it means that term t,
appears inside t;, and C is the context inside
which t, appears

A single rewrite step

. ﬂ' — 1, iff there exists a context C, and a rewrite
rule I; — I, such that:
—_

k= cla]
tl = C[(,]

A single rewrite step

» t; — t,iff there exists a context C, and a rewrite
rule Iy — 1, such that:
4= CL'1]
—t,=Cll]
» Can we show:
—s(0 + s(0)) — s(s(0))

— from rewrite rule[s(x) + y{— m

—2A 7

A single rewrite step

« t; = L, iff there exists a context C, aterm t, a
substitution 6, and a rewrite rule |; — |, such
that:

A single rewrite step

. m there exists a context C, a terrr@ a
substitution 8, and a rewrite rule l; — |, such
that: —

—t, =C[t]
— 0 =unify(l;, 1)
=t = C[8(1,)]

Transitive closure of rewrites

« —"is the reflexive transitive closure of —

 Another way to say the same: we write t; —"t,t0
mean that there exists a possibly empty
sequence s; ... S, such that:
-t =2sy—=...=2s, =1

Termination

* Antermtis in normal form or is irreducible if
there is no term t’ such thatt — t’

» A rewrite system (T, R) is normalizing (also
called weakly normalizing) if everyt € T has a
normal form

» A rewrite system (T,R) is terminating (also called
strongly normalizing) if there is no term t € T that
will rewrite forever

» What is the difference between strong and weak
normalization?

Termination

Termination

» One technique for showing termination: assign a
measure to each term, and show that rewrite
rules strictly decrease the measure

» Example:
s(p(x)) = x
p(s(x)) = x
minus(0) — 0
minus(s(x)) — p(minus(x))

» Termination guarantees normalization

» However, it does not guarantee that there is a
unique normal form for a given term

» We would like to have this additional uniqueness
property
» Confluence is the additional property we need

Confluence

» Local confluence: for all terms / \
abandc,ifa—banda—c,
then there exists a term d such .
thatb—"dandc —"d

Confluence

» Local confluence: for all terms / \
abandc,ifa—banda—c,
then there exists a term d such .
thatb—"dandc —"d

« Global confluence: for all terms / \
abandc,ifa— "banda—"c, * *
then there exists a term d such .)
thatb—"dandc —"d

Confluence

 Local confluence: for all terms
abandc,ifa—banda—c, / \
then there exists a term d such
thatb—"dandc —"d

when there exists a d such thatb —" d
and ¢ —" d, we say that b and c are
joinable

» Global confluence: for all terms
abandc,ifa— "banda—"c,
then there exists a term d such
thatb—"dandc —"d

Relation between local and global

» Theorem: for a terminating system, local
confluence implies global confluence

» Proof by picture...

Proof by picture

Proof by picture

T moluctin w(’mawf
vnle Agasuce oty
P i
- DBae Coe: A dnne dug Mo
=> B, ame all

A o Wi one
p(ow(,

~ Tonolinchhat coge

0: L} lecak Conflummty
@: m«s ol 0“%&‘0\

Canonical systems

+ Aterminating and confluent system is canonical,
meaning that each term has a unique canonical
form

» Simple decision procedure for such systems

» To determinet; =t,:
—

Canonical systems

+ Aterminating and confluent system is canonical,
meaning that each term has a unique canonical
form

» Simple decision procedure for such systems:

» Todetermine t; = t,:

Find commied fom o £, & B
ornd COMfiOWL ATmPC

GU\M’.) '.\'\y'\ko\ (j" (p\lﬂ\a

Determining confluence

» We would like an algorithm for determining
whether a terminating system is confluent

» To do this, we need to define the notion of
critical pair

Critical pairs

=
. Letlx1 — anc@—?; be rewrite rules that have
no variables in‘cdémmon (rename vars if needed)
» Suppose |, = C[t] such that t is a non-trivial term
(not a variable), and such that 6 = unify(t,1,)
» Then (8(Clr,]),6(r,)) is a critical pair

» The intuition is that a critical pair represents a
choice point: given a term |,=C[l,], we can either
apply Iy — r; to get ry, or we can apply I, — r, to
get Clry]

Critical pairs: example

Critical pairs: example

w(x)) —>w(w w(b(x) J x36(v)

b|____2 — b(y
”['ﬂ/&fy))) l
/£

b(b(z)) — W(W(W(W(Z))))
wlw(wlf(utz)))

L(g(y))

b(w(x)) — w(w(w(b(x)

()
wib(y)) — biy))x&—obh’)
b(b(z)) — w(w(w(w(z))) G(wibly))
%
ooy, oty

7' [aned L[z)

wr (b(b(2))

/

e W - (2) Liorz))

Critical pairs: another example

Critical pairs: another example

xALY)
(p(x)) — X
PlSp)—x— PL8(Y) =Y AlpLatey)
minus(0) — 0 s
Yminus(s(x)) — p(minus(x)) (1) , 4(7))

tvdmua (3 (F00)

minus(0) — 0
minus(s(x)) — p(minus(x))

s(p(x)) — x
<P(S(X)) —+X

i (A (p (V)

/SN

{p (MWA (hex)) ;g (X))

Critical pairs

» Theorem: A term rewrite system is locally
confluent if and only if all its critical pairs are
joinable

» Recall the meaning of joinable: b and c are
joinable if there exists a d such thatb —"d and ¢
—"d

» Corollary: A terminating rewrite system is
confluent if and only if all its critical pairs are
joinable

Algorithm for deciding confluence

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

Algorithm for deciding confluence

» Given a terminating rewrite system, find all
critical pairs, and call this set CR

» For each pair (s,t) € CR:
— Find all the normal forms of s and t

— Note: s and t are guaranteed to have normal forms
because the system is terminating.

Algorithm for deciding confluence

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

» For each pair (s,t) € CR:
— Find all the normal forms of s and t

Algorithm for deciding confluence

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

» For each pair (s,t) € CR:
— Find all the normal forms of s and t

— Let NS be the set of normal forms of s and NT be the
set of normal forms of t

Algorithm for deciding confluence

Given a terminating rewrite system, find all
critical pairs, and call this set CR

» For each pair (s,t) € CR:

— Find all the normal forms of s and t

— Let NS be the set of normal forms of s and NT be the
set of normal forms of t

— If sizeof(NS) > 1 or sizeof(NT) > 1 return “NOT
CONFLUENT”

— (more than one normal form implies NOT confluent
since confluence would imply unique normal form)

Algorithm for deciding confluence

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

» For each pair (s,t) € CR:
— Find all the normal forms of s and t

— Let NS be the set of normal forms of s and NT be the
set of normal forms of t

— If sizeof(NS) > 1 or sizeof(NT) > 1 return “NOT
CONFLUENT”

— If NS and NT are disjoint, return “NOT CONFLUENT”
« Return “CONFLUENT”

What if the system is not confluent?

What if the system is not confluent?

Knuth-Bendix completion procedure

« If we find a critical pair such that the normal
forms are disjoint, add additional rewrite rules

» This is called the Knuth-Bendix completion
procedure

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

» While there exists a critical pair (s,t) € CR such
that the normal forms NS of s and the normals
forms NT of t are disjoint:

— For each s’ in NS, and for each term t’ in NT, add the
rewrite rule s’ — t’

Knuth-Bendix completion procedure

Knuth-Bendix completion procedure

+ Given a terminating rewrite system, find all
critical pairs, and call this set CR

» While there exists a critical pair (s,t) € CR such
that the normal forms NS of s and the normals
forms NT of t are disjoint:

— For each s’ in NS, and for each term t’ in NT, add the
rewrite rule s’ — t’

+ Subtlety: should we add s’ — t', or t' — s’?

« Completion algorithm also takes a “reduction order” as an
argument

« Algorithm fails if s and t' have the same reduction order

» Three possible outcomes:

— Terminates with success, yielding a terminating
confluent rewrite system that is equivalent to the
original rewrite system (in terms of equalities that are
provable)

— Terminate with a failure

— Does not terminate

Example

s(p(x)) = x

p(s(x)) = x

minus(0) — 0

minus(s(x)) — p(minus(x))

TS lA([t("))

/SN

(fb(m»w (k) W”M ()Y

Example
/ y \
SPU) =X [(p()]) =5 M (<)
p(s(x)) — x [e b
minuS(O) -0 - ”.1)'-)) - A[Wm(x})]

minus(s(x)) — p(minus(x)) Done !
For. ozomplg «

2 (i [(4]

TS lA([t("))

/SN

. L
wnioens (R (] () 0 ks
(ﬁ((hex)) | wwm (X)) <MMI:4(A()), p ()))

i (1))

ukcat r\a"\/ ‘g:fab‘f

