

Rewrite rules

Equality

- We've seen one way of dealing with equality in this class: the E-graph
- Another way to deal with equalities is to treat them as rewrite rules
- An equality a = b can be used either as the rewrite rule $a \to b$ or $b \to a$

Plan

- First, we'll see how rewrite rules are used in a few system
 - We'll see some of the issues that come up
- · Then we'll dig into the details
 - Formal foundations: rewrite systems
- · This is a huge area of work and research
 - We'll see the snowflake on the tip of the iceberg

Rewrite rules in resolution

• Show that the following is unsat:

$$-\{P(1), \neg P(f(0)), f(0) = 1\}$$

$$\uparrow P(1)$$

$$\downarrow \neg P(f(0)) \rightarrow \downarrow$$

$$\downarrow \neg \neg P(f(0)) \rightarrow \downarrow$$

Rewrite rules in resolution

- Show that the following is unsat:
 - $\{ P(1), \neg P(f(0)), f(0) = 1 \}$
- This technique is called demodulation

Resolution: another example

- · Show that the following is unsat:
 - $\{ P(0), \neg P(f(0)), f(0) = 0 \}$

0-> (60)

1(0)-0

Resolution: another example

- · Show that the following is unsat:
 - $\{ P(0), \neg P(f(0)), f(0) = 0 \}$
- · Which direction to pick
 - In the first example, can choose $f(1) \rightarrow 1$ or $1 \rightarrow f(1)$
 - In the second example, pick $f(0) \rightarrow 0$
- · Termination issues are cropping up

Rewrite rules in ACL2

- · Recall ACL2 architecture:
 - Given a goal formula, try to apply various techniques in turn. Each technique generates sub-goals. Recurse on sub-goals.
- · Techniques:
 - Simplification
 - Instantiating known theorems
 - Term rewriting
 - As a last resort, induction

Rewrite rules in ACL2

- · Rewrite rules in ACL2 are guarded
- · A rewrite rule is a lemma of the form:
 - $h_1 \wedge ... \wedge h_n \Rightarrow a = b$
- · Here again, must pick a direction for the equality
 - Try to rewrite more "complicated" terms to "simpler" terms

Rewrite rules in ACL2

- ACL2 also uses local equality assumptions for performing rewrites
- If lhs = rhs appears as a hypothesis in the goal, then replace lhs with rhs in rest of goal
- · Boyer and Moore call this cross-fertilization
- · More local than having rewrite lemmas

Performance issues

- · Heuristics for termination
 - Decreasing measure (guarantees termination "statically")
 - Detect infinite loops and stop (can detect loops in the terms, or loops in the application of rules)
 - Or just have a timeout
- · One can also cache the results of rewriting
 - Rewriting can be expensive

Moving to the formal details...

- We've seen some intuition for where to use rewrite rules
- · Now, let's see some of the details
- Rewrite rules have been studied in the context of term rewrite systems, which to are just sets of rewrite rules

Term rewrite systems

- A term rewrite system is a pair (T, R), where T is a set of terms and R is a set of rewrite rules of the form I₁ → I₂
- T should actually be an algebra signature, but for our purposes, thinking of T as a set of terms is good enough
- Rewrite rules can have free variables, but variables on the rhs must be a subset of variables on the lhs

Example

```
0+y\rightarrow y
s(x)+y\rightarrow s(x+y)
fib(0)\rightarrow 0
fib(s(0))\rightarrow s(0)
fib(s(s(x)))\rightarrow fib(s(x))+fib(x)
• Run on: fib(s(s(s(0))))\qquad fib(x)=2
fib\left(\frac{h(h(0))}{h(h(0))}+\frac{h(h(0))}{h(h(0))}+\frac{h(h(0))}{h(h(0))}
\frac{h(h(0))}{h(h(0))}+\frac{h(h(0))}{h(h(0))}
```

Example

A single rewrite step

- We write $\underline{t_1} \rightarrow t_2$ to mean that term t_1 rewrites to term t_2 $-s(0+s(0)) \rightarrow s(s(0))$
- Notice that the rewrite rule can be applied to a sub-term!
- · We need a way to formalize this

Contexts

- A context C[·] is a term with a "hole" in it:
 C[·] = s(0 + ·)
- The whole can be filled:
 C[s(0)] = s(0 + s(0))
- When we write $t_1=C[t_2]$, it means that term t_2 appears inside t_1 , and C is the context inside which t_2 appears

A single rewrite step

• $t_1 \rightarrow t_2$ iff there exists a context C, and a rewrite rule $l_1 \rightarrow l_2$ such that:

$$k_i = C[\ell_i]$$

$$k_i = C[\ell_i]$$

A single rewrite step

- $t_1 \rightarrow t_2$ iff there exists a context C, and a rewrite rule $I_1 \rightarrow I_2$ such that: $-t_1 = C[I_1]$

 - $t_2 = C[l_2]$
- · Can we show:
 - $s(0 + s(0)) \rightarrow s(s(0))$ - from rewrite rule s(x) + y

A single rewrite step

• $t_1 \rightarrow t_2$ iff there exists a context C, a term t, a substitution θ , and a rewrite rule $I_1 \rightarrow I_2$ such

A single rewrite step

- (t₁)→(t₂)ff there exists a context C, a term(t) a substitution θ , and a rewrite rule $I_1 \rightarrow I_2$ such
 - $-t_1 = C[t]$
 - $-\theta = unify(I_1, t)$
 - $t_2 = C[\theta(l_2)]$

Transitive closure of rewrites

- \rightarrow^* is the reflexive transitive closure of \rightarrow
- Another way to say the same: we write $t_1 \rightarrow^* t_2$ to mean that there exists a possibly empty sequence $s_0 \dots s_n$ such that:

$$-\ t_1 \rightarrow s_0 \rightarrow ... \rightarrow s_n \rightarrow t_2$$

Termination

- An term t is in normal form or is irreducible if there is no term t' such that $t \rightarrow t'$
- A rewrite system (T, R) is normalizing (also called weakly normalizing) if every $t\in T$ has a normal form
- A rewrite system (T,R) is terminating (also called strongly normalizing) if there is no term $t \in T$ that will rewrite forever
- What is the difference between strong and weak normalization?

Termination

- One technique for showing termination: assign a measure to each term, and show that rewrite rules strictly decrease the measure
- · Example:

 $s(p(x)) \to x \,$

 $p(s(x)) \to x$

 $\text{minus(0)} \rightarrow 0$

 $minus(s(x)) \rightarrow p(minus(x))$

Termination

- · Termination guarantees normalization
- However, it does not guarantee that there is a unique normal form for a given term
- We would like to have this additional uniqueness property
- · Confluence is the additional property we need

Confluence

• Local confluence: for all terms a,b and c, if $a \to b$ and $a \to c$, then there exists a term d such that $b \to^* d$ and $c \to^* d$

Confluence

• Local confluence: for all terms a,b and c, if $a \rightarrow b$ and $a \rightarrow c$, then there exists a term d such that $b \rightarrow {}^*d$ and $c \rightarrow {}^*d$

• Global confluence: for all terms a,b and c, if a \rightarrow * b and a \rightarrow * c, then there exists a term d such that b \rightarrow * d and c \rightarrow * d

Confluence

• Local confluence: for all terms a,b and c, if $a \to b$ and $a \to c$, then there exists a term d such that $b \to^* d$ and $c \to^* d$

 Global confluence: for all terms a,b and c, if a → *b and a → *c, then there exists a term d such that b→*d and c →*d

Relation between local and global

- Theorem: for a terminating system, local confluence implies global confluence
- · Proof by picture...

Proof by picture

Canonical systems

- A terminating and confluent system is canonical, meaning that each term has a unique canonical form
- · Simple decision procedure for such systems
- To determine $t_1 = t_2$:

Canonical systems

- A terminating and confluent system is canonical, meaning that each term has a unique canonical form
- Simple decision procedure for such systems:
- To determine $t_1 = t_2$:

Find convoiced form of t, & to and confine convoiced forms syntactically

Determining confluence

- We would like an algorithm for determining whether a terminating system is confluent
- To do this, we need to define the notion of critical pair

Critical pairs

- Let I₁ → r₁ and I₂ → r₂ be rewrite rules that have no variables in common (rename vars if needed)
- Suppose I₁ = C[t] such that t is a non-trivial term (not a variable), and such that θ = unify(t,l₂)
- Then $(\theta(C[r_2]), \theta(r_1))$ is a critical pair
- The intuition is that a critical pair represents a choice point: given a term I₁=C[I₂], we can either apply I₁ → r₁ to get r₁, or we can apply I₂ → r₂ to get C[r₂]

Critical pairs: example

```
\begin{array}{c} \underbrace{b(w(x))}_{w(\underline{b}(y))} \to w(w(w(b(x)))) \underbrace{j}_{x \to \ell(\gamma)} \\ w(\underline{b}(y)) \to b(y) \\ b(b(z)) \to w(w(w(w(z)))) \\ \underbrace{\frac{\ell(v(\ell(\gamma)))}{\ell}}_{w(u(\ell(u(\ell(k(\gamma)))))} \\ \end{array}
```

Critical pairs: example

Critical pairs: another example

```
\begin{array}{c} s(p(x)) \rightarrow x \\ p(s(x)) \rightarrow y \\ p(s(x)) \rightarrow
```

Critical pairs: another example

$$\begin{array}{c} s(p(x)) \rightarrow x \\ p(s(x)) \rightarrow x \\ minus(0) \rightarrow 0 \\ minus(s(x)) \rightarrow p(minus(x)) \\ \\ minus \left(\delta \left(\mu^{(x)} \right) \right) \\ \\ \left\langle \mu^{(minus)} \left(\mu^{(x)} \right) \right\rangle \\ \\ \end{array}$$

Critical pairs

- Theorem: A term rewrite system is locally confluent if and only if all its critical pairs are joinable
- Recall the meaning of joinable: b and c are joinable if there exists a d such that b → d and c → d
- Corollary: A terminating rewrite system is confluent if and only if all its critical pairs are joinable

Algorithm for deciding confluence

 Given a terminating rewrite system, find all critical pairs, and call this set CR

Algorithm for deciding confluence

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- For each pair (s,t) ∈ CR:
 - Find all the normal forms of s and t
 - Note: s and t are guaranteed to have normal forms because the system is terminating.

Algorithm for deciding confluence

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- For each pair $(s,t) \in CR$:
 - Find all the normal forms of s and t

Algorithm for deciding confluence

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- For each pair (s,t) ∈ CR:
 - Find all the normal forms of s and t
 - Let NS be the set of normal forms of s and NT be the set of normal forms of t

Algorithm for deciding confluence

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- For each pair (s,t) ∈ CR:
 - Find all the normal forms of s and t
 - Let NS be the set of normal forms of s and NT be the set of normal forms of t
 - If sizeof(NS) > 1 or sizeof(NT) > 1 return "NOT CONFLUENT"
 - (more than one normal form implies NOT confluent since confluence would imply unique normal form)

Algorithm for deciding confluence

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- For each pair (s,t) ∈ CR:
 - Find all the normal forms of s and t
 - Let NS be the set of normal forms of s and NT be the set of normal forms of t
 - If sizeof(NS) > 1 or sizeof(NT) > 1 return "NOT CONFLUENT"
 - If NS and NT are disjoint, return "NOT CONFLUENT"
- Return "CONFLUENT"

What if the system is not confluent?

What if the system is not confluent?

- If we find a critical pair such that the normal forms are disjoint, add additional rewrite rules
- This is called the Knuth-Bendix completion procedure

Knuth-Bendix completion procedure

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- While there exists a critical pair (s,t) ∈ CR such that the normal forms NS of s and the normals forms NT of t are disjoint:
 - For each s' in NS, and for each term t' in NT, add the rewrite rule s' \rightarrow t'

Knuth-Bendix completion procedure

- Given a terminating rewrite system, find all critical pairs, and call this set CR
- While there exists a critical pair (s,t) ∈ CR such that the normal forms NS of s and the normals forms NT of t are disjoint:
 - For each s' in NS, and for each term t' in NT, add the rewrite rule s' \rightarrow t'
 - Subtlety: should we add $s' \to t',$ or $t' \to s'?$
 - Completion algorithm also takes a "reduction order" as an argument
 - Algorithm fails if s' and t' have the same reduction order

Knuth-Bendix completion procedure

- · Three possible outcomes:
 - Terminates with success, yielding a terminating confluent rewrite system that is equivalent to the original rewrite system (in terms of equalities that are provable)
 - Terminate with a failure
 - Does not terminate

Example

```
p(s(x)) \rightarrow x
p(s(x)) \rightarrow x
p(s(x)) \rightarrow x
p(s(x)) \rightarrow 0
p(s(x)) \rightarrow p(s(x))
p(s(x)) \rightarrow p(s(x))
p(s(x)) \rightarrow x
p(
```

#