# Day 2.5 Discussion session

Neil Rhodes

UC San Diego

#### **Overview**

- Proofs
- *O*(*n*)
- Recurrence relations

# **Types of Proofs**

**Induction** A base case is proved and an induction rule is used to prove a series of other cases.

**By contradiction** To prove a, assume  $\neg a$ . Show that leads to a contradiction

**Contrapositive** To prove  $a \rightarrow b$ , prove  $\neg b \rightarrow \neg a$ 

By adversary Adversary provides value for all universal quantifiers

## Weak inductive proof

- Inductive step: assume true for n-1, show true for n.
- Example: Prove  $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ 
  - base case: n = 1: 1(1+1)/2 = 1
  - inductive step: assume true for n-1  $(\sum_{i=1}^{n-1} i = \frac{n-1(n-1+1)}{2})$ , show true for n

$$\sum_{i=1}^{n} i = n + \sum_{i=1}^{n-1} i = n + \frac{(n-1)n}{2}$$
$$= \frac{2n + n(n-1)}{2} = \frac{n(n+1)}{2}$$

## **Inductive proof**

- Inductive step: assume true for 1..n 1, show true for n
- Definitions:
  - Binary tree: empty or: left binary tree + right binary tree + root node
  - depth(node) = length of path from node to root
  - height of tree = maximum depth of its nodes
     (-1 for empty tree)

# **Inductive proof**

- Example: Prove that if a binary tree T has height h, then T has fewer than  $2^{h+1}$  nodes
- Base case (on height) h = -1: T has 0 nodes which is less than  $2^{-1+1} = 2^0 = 1$  nodes
- Inductive step: Assume that trees of height of h − 1 or less have at most 2<sup>h-1</sup> − 1 nodes. Show true for an arbitrary tree, T, of height h. Nodes in left subtree and right subtree have depth 1 less than in T. Thus, each subtree has height ≤ h − 1. By inductive step, each has at most 2<sup>h</sup> − 1 nodes. Total nodes in tree < 2<sup>h</sup> − 1 + 2<sup>h</sup> − 1 + 1 = 2<sup>h+1</sup> − 1. QED.

#### O(n)

- Prove  $f(n) = 3n^3 10n^2 + n 10 = O(n^3)$
- Need to come up with c and  $n_0$  such that  $0 \le f(n) \le c \cdot n^3$
- $f(n) \ge 0$  for  $n \ge 4$ . So, let  $n_0 = 4$
- $3n^3 10n^2 + n 10 < 3n^3 + n$
- $3n^3 + n \le 3n^3 + n^3 = 4n^3$
- So, let c = 4
- We've shown that  $\forall n \geq 4, 0 \leq f(n) \leq 4n^3$

#### O(n)

- Prove  $f(n) = 3n^3 10n^2 + n 10 \neq O(n^2)$
- Assume, for the sake of contradiction, that  $f(n) = O(n^2)$ .
- Thus,  $\exists c$  and  $n_0$  such that  $\forall n \ge n_0, 0 \le f(n) \le 4n^3$
- So,  $\forall n \ge n_0, 3n^3 10n^2 + n 10 \le c \cdot n^2$
- Therefore,  $\forall n \ge n_0, 3n^3 \le (c+10)n^2 n + 10$
- Dividing by 3n,  $n \le \frac{c+10}{3} - \frac{1}{3n} + \frac{10}{3n^2} \le (c+10) + 10 \le c+20$
- Let  $n = max(n_0, c + 21)$ . Then,  $c + 21 \le n \le c + 20$ , a contradiction.
- Therefore  $f(n) \neq O(n^2)$

#### **Recurrence relations**

- Show T(n) = T(n-1) + 2 is O(n) (Unstated assumption: T(1) =some constant, k)
- Show  $T(n) \le cn$  for some c > 0
- Inductive step: Assume  $T(n-1) \le c(n-1)$  show  $T(n) \le cn$
- $T(n) \le T(n-1) + 2 = c(n-1) + 2 = cn c + 2$
- $T(n) \le cn \text{ (if } c \ge 2)$
- Base case:  $T(1) \le c \cdot 1$ . True if  $c \ge k$ .
- Thus, let  $c = max(2, k), n_0 = 1$

#### **Recurrence relations**

- Show  $T(n) = 5T(\lfloor \frac{n}{5} \rfloor) + 6$  is  $O(n \log n)$  (Unstated assumption: T(1) = some constant, k)
- Show  $T(n) \le c(n \log n)$  for some c > 0
- Inductive step: Assume  $T(\lfloor \frac{n}{5} \rfloor) \le c(\lfloor \frac{n}{5} \rfloor \log(\lfloor \frac{n}{5} \rfloor))$  show  $T(n) \le c(n \log n)$
- $T(n) \le 5T(\lfloor \frac{n}{5} \rfloor) + 6 = 5(c(\lfloor \frac{n}{5} \rfloor \log(\lfloor \frac{n}{5} \rfloor))) + 6 = cn\log(\frac{n}{5}) + 6$
- $T(n) \le cn \log n cn \log 5 + 6 \le cn \log n 3cn + 6$
- $T(n) \le c n \log n$  if  $c \ge 2$
- Base case: $T(1) \le c \cdot 1$ . True if  $c \ge k$ . Let  $c = max(k, 2)n_0 = 1$