
CSE 120
Principles of Operating

Systems

Fall 2024

Lecture 14: Protection
Geoffrey M. Voelker

On Protection
• OS textbooks can be somewhat cryptic when it comes

to some aspects of protection
♦ Access control lists in the file system make sense
♦ But capabilities often remain mysterious, why we have them,

how OSes actually use them, and how they relate to ACLs
• Goal is to make this more concrete, and to explain why

♦ You will never look at “opening a file” the same way again…

November 20, 2024 CSE 120 – Lecture 14 – Protection 2

Multics
• Historically very important operating system

♦ Large research project at MIT started in the 60s
♦ Not a commercial operating system, but…

• Unix drew heavily upon ideas from Multics
♦ Unix tended to avoid the more complex aspects of Multics

» Multiple reasons (lack of hardware support, design philosophy)

• Famous seminal paper on Multics protection
♦ Jerome H. Saltzer, “Protection and the Control of Information

Sharing in Multics”, CACM 1974
• Describes the design and mechanisms for protection,

and reasoning behind the design choices (the “why”)
♦ Modern OSes (Unix, Windows, MacOS) follow these footsteps

November 20, 2024 CSE 120 – Lecture 14 – Protection 3

Protection Principles
1) Permission rather than exclusion

♦ Default is no access (will immediately discover if wrong)
2) Check every access to every object

♦ Including every instruction and memory reference
3) Design is not secret

♦ Linux is open source, and that should not make it insecure
4) Principle of least privilege

♦ Only execute with the privileges you need (avoids mistakes)
5) User interface to protection must be easy to use

♦ If it is hard for users to use the protection system, they will not
use it and instead find ways around it

We will see how these principles manifest in OSes today
November 20, 2024 CSE 120 – Lecture 14 – Protection 4

Users
• Protection starts with the concept of user
• Which user you are completely defines…

♦ What programs you can run (execute)
♦ Which files you can access, and how (read, write)

• Cannot do anything on the system until you login
• Once you login, everything you do on the system is

performed under your user ID (UID)
♦ Every process runs under a user ID
♦ The user ID is the basis for protection checks

• Can a process open a file? Does the user ID
associated with the process have permission to open
the file?

November 20, 2024 CSE 120 – Lecture 14 – Protection 5

Root & Administrator
• The user “root” is special on Unix

♦ It bypasses all protection checks in the kernel
♦ Administrator is the equivalent on Windows

• Recall “Principle of least privilege”
• Always running as root can be dangerous

♦ A mistake (or exploit) can harm the system
» “rm” will always remove a file

♦ Why we create user accounts even if you have root access
» You only run as root when you need to modify the system

♦ If you have Administrator privileges on Windows, then you are
effectively always running as root (unfortunately)

» Need additional protection mechanisms (User Account Control)

November 20, 2024 CSE 120 – Lecture 14 – Protection 6

setuid
• OSes provide a mechanism to enable you to run

programs with the privileges of other users
♦ Unix: setuid, setgid (on executable files)
♦ Windows: runas, CreateProcessAsUser (on process creation)

• Normally a process runs with your user privileges

• By running a setuid program, the process runs with the
privileges of the user or group associated with the file

November 20, 2024 CSE 120 – Lecture 14 – Protection 7

su & sudo
• The su command runs a shell with root privileges

♦ Authenticate using the password for the root user
♦ Effectively logging in as root
♦ All child processes (commands) run with root privs

• The sudo command runs a process with root privileges
♦ Authenticate using the user’s password
♦ User must be in the sudo group (/etc/group)
♦ Effectively running the process as setuid root
♦ More precise than su since it is per-process

November 20, 2024 CSE 120 – Lecture 14 – Protection 8

Android
• Android uses Linux as the underlying operating system

♦ Linux has a protection model designed for many users
♦ But smartphones are single-user personal devices

• Instead, Android uses the user abstraction for apps
♦ Each app has its own user ID (UID)
♦ All the mechanisms for isolation, protection, and sharing

implemented for users now applies to apps
♦ Provides a user-based sandbox for each app

November 20, 2024 CSE 120 – Lecture 14 – Protection 9

File System Protection
• The file system stores the permissions on all objects

(files, directories, executables, devices, …)
♦ It is the static representation of permissions

• The mechanism used to represent static permissions is
the access control list (ACL)
♦ Recall “Permission, not exclusion”

• For each object (file), which users have access to the
object, and what rights do they have?
♦ Can be compact: Unix’s owner/group/other, read/write/execute
♦ Can be flexible: an arbitrary list of user+rights entries

» Windows’ explicit ACLs
» Linux extended file attributes (xattrs)

November 20, 2024 CSE 120 – Lecture 14 – Protection 10

Unix Access Control List
• Completely familiar to you

November 20, 2024 CSE 120 – Lecture 14 – Protection 11

Windows Access Control List

November 20, 2024 CSE 120 – Lecture 12 – File Systems 12

Virtual Memory Protection
• The address space defines permissions for a process

under execution
♦ It is the dynamic representation of permissions

• The mechanism used to represent dynamic
permissions for using an address space are capabilities

• Capabilities are pointers (references) + rights
♦ Also known as descriptors, tokens, etc.
♦ Pointer/reference identifies an object
♦ Rights determine what you can do with an object

• Page table entries are our VM capabilities
♦ Every PTE determines what the process can do with that page

November 20, 2024 CSE 120 – Lecture 14 – Protection 13

CSE 120 – Lecture 14 – Protection 14

Page Table Entries (PTEs)

• Page table entries control mapping
♦ The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs
♦ The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs
♦ The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used
♦ The Protection bits say what operations are allowed on page

» Read, write, execute
♦ The page frame number (PFN) determines physical page

R VM Prot Page Frame Number
1 1 1 3 20

“Pointer”“Rights”

November 20, 2024

PTEs as Capabilities
• Recall “Check every access”
• When it comes to memory, this means:

♦ Check every instruction execution
♦ Check every load/store

• The TLB uses PTEs to check every memory access
♦ When the CPU loads the next instruction to execute, the TLB

verifies that the instruction comes from a page that has the
execute bit set

♦ When the CPU stores a value onto a page, the TLB verifies
that the process has write-access to that page (not read-only)

November 20, 2024 CSE 120 – Lecture 14 – Protection 15

November 20, 2024 CSE 120 – Lecture 14 – Protection 16

Protection Model
• More formally…

♦ Objects are “what”, subjects are “who”, actions are “how”
♦ Logging in determines the subject (“who”)
♦ Objects in the file system are the “what” (also processes)
♦ Permissions are the actions (“how”)

• A protection system dictates whether a given action
performed by a given subject on a given object should
be allowed
♦ You can read and/or write your files, but others cannot
♦ You can read “/etc/motd”, but you cannot write it

November 20, 2024 CSE 120 – Lecture 14 – Protection 17

Representing Protection
Access Control Lists (ACL)
• For each object, maintain a list

of subjects and their permitted
actions

Capability Lists
• For each subject, maintain a list

of objects and their permitted
actions

/one /two /three
Alice rw - rw
Bob w - r
Charlie w r rw

Subjects

Objects

ACL

Capability List

(Table not actually
materialized)

November 20, 2024 CSE 120 – Lecture 14 – Protection 18

ACLs and Capabilities
• Approaches differ only in how the table is “represented”

♦ Have different tradeoffs, so we use them in different ways
• Capabilities are easier to transfer

♦ They are like keys, can handoff, does not depend on subject
♦ Very fast to check

» TLB uses PTEs to check every memory reference
• In practice, ACLs are easier to use

♦ Object-centric, easy to grant, revoke
» To revoke capabilities, have to keep track of all subjects that have

the capability – a challenging problem
♦ Easier for users to express their protection goals
♦ But, ACLs slow to check compared to capabilities

Why Have Both?
• OSes use ACLs on objects in the file system

♦ These are what users manipulate to express protection
• OSes use capabilities when checking access frequently

♦ Checking every memory reference needs to be fast
♦ Checking protection bits in PTEs can be done by hardware

• So the OS uses both, and they are directly related
♦ Capabilities are in fact derived from ACLs
♦ Let users express protection with ACLs
♦ ACLs are slow to check, so bootstrap from ACLs into capabilities
♦ Capabilities are much faster to check, can check frequently

• Two examples to make this more concrete

November 20, 2024 CSE 120 – Lecture 14 – Protection 19

Checking File Permissions
• Recall the principle of “check every access”
• For reading/writing a file, that means that the OS

needs to verify on every read()/write() that the process
has permission to perform the read/write syscall

• But, checking file permissions is expensive
♦ Scanning ACLs on every read/write is slow

• So how do we optimize the permissions check?
♦ Open!

November 20, 2024 CSE 120 – Lecture 14 – Protection 20

Opening a File
• Ever since we started learning how to program, we

learned that to read/write a file we first had to open it
♦ Open seems completely natural to us

• “Opening a file” is actually a subtle, but crucial step in
bootstrapping protection from the file system (static) to
executing in a process (dynamic)
♦ It bootstraps from an ACL to a capability

November 20, 2024 CSE 120 – Lecture 14 – Protection 21

File Descriptors
• When a process calls open, the OS checks the user ID

for the process against the ACL for the file
♦ The process wants to open the file for writing, does the ACL

say that the process user ID has write permission for the file?
♦ Checking an ACL is slow, so we only want to do it once

• What does open return? A file descriptor
♦ This descriptor is a capability
♦ It is passed to every call to read/write

• OS checks the descriptor on every read/write to verify:
♦ That the descriptor is valid (the file was opened)
♦ That the process can perform the action on the file

» Calling write on a file opened read-only will fail
» OS doesn’t check the ACL, it checks the descriptor (capability)

November 20, 2024 CSE 120 – Lecture 14 – Protection 22

PTEs Once Again
• We said PTEs are capabilities

♦ So where are they derived from?
• Recall loading a program into an address space
• When creating the address space

♦ For the pages containing code, we set the PTE protection bits
to read-only and execute (if the hardware supports it)

♦ For pages containing data, we set the PTE protection bits to
read/write, but not execute

♦ For memory-mapped files, we set the PTE protection bits to
read/write or read-only depending on the file ACL

» If the ACL says that the user ID for the process only has read
access to a file, can only map it read-only in the address space

November 20, 2024 CSE 120 – Lecture 14 – Protection 23

“Ease of Use” Principle

November 20, 2024 CSE 120 – Lecture 12 – File Systems 24

User Access Control
• Windows personal user accounts typically in the

Administrators group
♦ Effectively always running as “root”
♦ Malware that exploits a user process now has root privileges

• Windows now has a second level of authorization /
authentication: User Access Control
♦ Prompt for authorizing certain tasks
♦ Prompt to authenticate as Administrator
 for other tasks (similar to “su”)
♦ Require user interaction as a guard
 against malware

November 20, 2024 CSE 120 – Lecture 14 – Protection 25

Next time
• Read Appendix B

November 20, 2024 CSE 120 – Lecture 14 – Protection 26

	CSE 120�Principles of Operating Systems��Fall 2024
	On Protection
	Multics
	Protection Principles
	Users
	Root & Administrator
	setuid
	su & sudo
	Android
	File System Protection
	Unix Access Control List
	Windows Access Control List
	Virtual Memory Protection
	Page Table Entries (PTEs)
	PTEs as Capabilities
	Protection Model
	Representing Protection
	ACLs and Capabilities
	Why Have Both?
	Checking File Permissions
	Opening a File
	File Descriptors
	PTEs Once Again
	“Ease of Use” Principle
	User Access Control
	Next time

