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On Protection
• OS textbooks can be somewhat cryptic when it comes 

to some aspects of protection
♦ Access control lists in the file system make sense
♦ But capabilities often remain mysterious, why we have them, 

how OSes actually use them, and how they relate to ACLs
• Goal is to make this more concrete, and to explain why

♦ You will never look at “opening a file” the same way again…
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Multics
• Historically very important operating system

♦ Large research project at MIT started in the 60s
♦ Not a commercial operating system, but…

• Unix drew heavily upon ideas from Multics
♦ Unix tended to avoid the more complex aspects of Multics

» Multiple reasons (lack of hardware support, design philosophy)

• Famous seminal paper on Multics protection
♦ Jerome H. Saltzer, “Protection and the Control of Information 

Sharing in Multics”, CACM 1974
• Describes the design and mechanisms for protection, 

and reasoning behind the design choices (the “why”)
♦ Modern OSes (Unix, Windows, MacOS) follow these footsteps
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Protection Principles
1) Permission rather than exclusion

♦ Default is no access (will immediately discover if wrong)
2) Check every access to every object

♦ Including every instruction and memory reference
3) Design is not secret

♦ Linux is open source, and that should not make it insecure
4) Principle of least privilege

♦ Only execute with the privileges you need (avoids mistakes)
5) User interface to protection must be easy to use

♦ If it is hard for users to use the protection system, they will not 
use it and instead find ways around it

We will see how these principles manifest in OSes today
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Users
• Protection starts with the concept of user
• Which user you are completely defines…

♦ What programs you can run (execute)
♦ Which files you can access, and how (read, write)

• Cannot do anything on the system until you login
• Once you login, everything you do on the system is 

performed under your user ID (UID)
♦ Every process runs under a user ID
♦ The user ID is the basis for protection checks

• Can a process open a file?  Does the user ID 
associated with the process have permission to open 
the file?
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Root & Administrator
• The user “root” is special on Unix

♦ It bypasses all protection checks in the kernel
♦ Administrator is the equivalent on Windows

• Recall “Principle of least privilege”
• Always running as root can be dangerous

♦ A mistake (or exploit) can harm the system
» “rm” will always remove a file

♦ Why we create user accounts even if you have root access
» You only run as root when you need to modify the system

♦ If you have Administrator privileges on Windows, then you are 
effectively always running as root (unfortunately)

» Need additional protection mechanisms (User Account Control)
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setuid
• OSes provide a mechanism to enable you to run 

programs with the privileges of other users
♦ Unix: setuid, setgid (on executable files)
♦ Windows: runas, CreateProcessAsUser (on process creation)

• Normally a process runs with your user privileges
 

• By running a setuid program, the process runs with the 
privileges of the user or group associated with the file
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su & sudo
• The su command runs a shell with root privileges

♦ Authenticate using the password for the root user
♦ Effectively logging in as root
♦ All child processes (commands) run with root privs

• The sudo command runs a process with root privileges
♦ Authenticate using the user’s password
♦ User must be in the sudo group (/etc/group)
♦ Effectively running the process as setuid root
♦ More precise than su since it is per-process
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Android
• Android uses Linux as the underlying operating system

♦ Linux has a protection model designed for many users
♦ But smartphones are single-user personal devices

• Instead, Android uses the user abstraction for apps
♦ Each app has its own user ID (UID)
♦ All the mechanisms for isolation, protection, and sharing 

implemented for users now applies to apps
♦ Provides a user-based sandbox for each app
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File System Protection
• The file system stores the permissions on all objects 

(files, directories, executables, devices, …)
♦ It is the static representation of permissions

• The mechanism used to represent static permissions is 
the access control list (ACL)
♦ Recall “Permission, not exclusion”

• For each object (file), which users have access to the 
object, and what rights do they have?
♦ Can be compact: Unix’s owner/group/other, read/write/execute
♦ Can be flexible: an arbitrary list of user+rights entries

» Windows’ explicit ACLs
» Linux extended file attributes (xattrs)
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Unix Access Control List
• Completely familiar to you
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Windows Access Control List
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Virtual Memory Protection
• The address space defines permissions for a process 

under execution 
♦ It is the dynamic representation of permissions

• The mechanism used to represent dynamic 
permissions for using an address space are capabilities

• Capabilities are pointers (references) + rights
♦ Also known as descriptors, tokens, etc.
♦ Pointer/reference identifies an object
♦ Rights determine what you can do with an object

• Page table entries are our VM capabilities
♦ Every PTE determines what the process can do with that page
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Page Table Entries (PTEs)

• Page table entries control mapping
♦ The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs
♦ The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs
♦ The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used
♦ The Protection bits say what operations are allowed on page

» Read, write, execute 
♦ The page frame number (PFN) determines physical page

R VM Prot Page Frame Number
1 1 1 3 20

“Pointer”“Rights”
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PTEs as Capabilities
• Recall “Check every access”
• When it comes to memory, this means:

♦ Check every instruction execution
♦ Check every load/store

• The TLB uses PTEs to check every memory access
♦ When the CPU loads the next instruction to execute, the TLB 

verifies that the instruction comes from a page that has the 
execute bit set

♦ When the CPU stores a value onto a page, the TLB verifies 
that the process has write-access to that page (not read-only)
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Protection Model
• More formally…

♦ Objects are “what”, subjects are “who”, actions are “how”
♦ Logging in determines the subject (“who”)
♦ Objects in the file system are the “what” (also processes)
♦ Permissions are the actions (“how”)

• A protection system dictates whether a given action 
performed by a given subject on a given object should 
be allowed
♦ You can read and/or write your files, but others cannot
♦ You can read “/etc/motd”, but you cannot write it
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Representing Protection
Access Control Lists (ACL)
• For each object, maintain a list 

of subjects and their permitted 
actions

Capability Lists
• For each subject, maintain a list 

of objects and their permitted 
actions

/one /two /three
Alice rw - rw
Bob w - r
Charlie w r rw

Subjects

Objects

ACL

Capability List

(Table not actually 
materialized)
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ACLs and Capabilities
• Approaches differ only in how the table is “represented”

♦ Have different tradeoffs, so we use them in different ways
• Capabilities are easier to transfer

♦ They are like keys, can handoff, does not depend on subject
♦ Very fast to check

» TLB uses PTEs to check every memory reference
• In practice, ACLs are easier to use

♦ Object-centric, easy to grant, revoke
» To revoke capabilities, have to keep track of all subjects that have 

the capability – a challenging problem
♦ Easier for users to express their protection goals
♦ But, ACLs slow to check compared to capabilities



Why Have Both?
• OSes use ACLs on objects in the file system

♦ These are what users manipulate to express protection
• OSes use capabilities when checking access frequently

♦ Checking every memory reference needs to be fast
♦ Checking protection bits in PTEs can be done by hardware

• So the OS uses both, and they are directly related
♦ Capabilities are in fact derived from ACLs
♦ Let users express protection with ACLs
♦ ACLs are slow to check, so bootstrap from ACLs into capabilities
♦ Capabilities are much faster to check, can check frequently

• Two examples to make this more concrete
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Checking File Permissions
• Recall the principle of “check every access”
• For reading/writing a file, that means that the OS 

needs to verify on every read()/write() that the process 
has permission to perform the read/write syscall

• But, checking file permissions is expensive
♦ Scanning ACLs on every read/write is slow

• So how do we optimize the permissions check?
♦ Open!
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Opening a File
• Ever since we started learning how to program, we 

learned that to read/write a file we first had to open it
♦ Open seems completely natural to us

• “Opening a file” is actually a subtle, but crucial step in 
bootstrapping protection from the file system (static) to 
executing in a process (dynamic)
♦ It bootstraps from an ACL to a capability
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File Descriptors
• When a process calls open, the OS checks the user ID 

for the process against the ACL for the file
♦ The process wants to open the file for writing, does the ACL 

say that the process user ID has write permission for the file?
♦ Checking an ACL is slow, so we only want to do it once

• What does open return?  A file descriptor
♦ This descriptor is a capability
♦ It is passed to every call to read/write

• OS checks the descriptor on every read/write to verify:
♦ That the descriptor is valid (the file was opened)
♦ That the process can perform the action on the file

» Calling write on a file opened read-only will fail
» OS doesn’t check the ACL, it checks the descriptor (capability)
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PTEs Once Again
• We said PTEs are capabilities

♦ So where are they derived from?
• Recall loading a program into an address space
• When creating the address space

♦ For the pages containing code, we set the PTE protection bits 
to read-only and execute (if the hardware supports it)

♦ For pages containing data, we set the PTE protection bits to 
read/write, but not execute

♦ For memory-mapped files, we set the PTE protection bits to 
read/write or read-only depending on the file ACL

» If the ACL says that the user ID for the process only has read 
access to a file, can only map it read-only in the address space
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“Ease of Use” Principle
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User Access Control
• Windows personal user accounts typically in the 

Administrators group
♦ Effectively always running as “root”
♦ Malware that exploits a user process now has root privileges

• Windows now has a second level of authorization / 
authentication: User Access Control
♦ Prompt for authorizing certain tasks
♦ Prompt to authenticate as Administrator
    for other tasks (similar to “su”)
♦ Require user interaction as a guard
    against malware
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Next time
• Read Appendix B
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